Crust and Lithosphere

- Our Charge
 - description of scientific problems
 - importance for broader society
 - importance of the topics within Earth and other sciences
 - existing and required resources for fundamental advancements

Crust and Lithosphere

- The Overriding Theme
 - Stewardship of Earth by Assessing Hazards,
 Discovering Resources, and Understanding
 Continental Evolution

Problem 1) The Role of Fluids in Earth Processes

- Key questions:
 - What is the fluid cycle of the Earth at all scales?
 - How do we know fluid is there?
 - How do seismic waves propagate in multiphase materials?
 - How does fluid relate to the spectrum of deformation (earthquakes, ETS, creep, etc.)?
 - What is the magma plumbing system and how does it evolve?
 - How do fluids respond to tectonic processes?

Problem 1) The Role of Fluids in Earth Processes

- Societal Impact
 - Monitoring groundwater resources (3-D and 4-D)
 - Petroleum resource exploration (improving methods to promote/enhance hydrocarbon extraction)
 - Carbon sequestration
 - Geothermal energy and connections to magma migration
 - Volcanic hazards (differentiating between explosive and non explosive eruptive systems by examining plumbing structure and composition)

Problem 2) Understanding the Earthquake Cycle

- Key questions
 - How do tectonic and other Earth processes influence the earthquake cycle?
 - What is different for intraplate earthquakes?
 - What happens right before an earthquake?
 - What are the temporal variations in Earth structure that relate to seismogenesis?

Problem 2) Understanding the Earthquake Cycle

- Societal Impact
 - Temporal monitoring of earthquake hazards to move towards forecasting
 - Assessing potential sites for nuclear power

Problem 3) Linking Rheology, Deformation and Tectonics

- Key questions:
 - What is the structure of faults systems (particularly the deep part)?
 - How do fault systems evolve over short and long time scales?
 - Where is the deformation, either seismic or aseismic,

now and in the past?

Problem 3) Linking Rheology, Deformation and Tectonics

- Key questions:
 - What is the nature of the lithosphere-asthenosphere boundary and how does it evolve through time?
 - What is the rheology of middle and lower crust and how variable is it?

What is the coupling of plate motions with mantle

flow?

Problem 3) Linking Rheology, Deformation and Tectonics

- Societal Impact
 - Earthquake hazards
 - Better understanding of landscape evolution

Problem 4) Evolution of Continents

- Key questions:
 - How do continents grow?
 - How is the crust and lithosphere created destroyed?

- What is the nature of the continental crust mantle boundary and how does it evolve through time?
- What causes mountain uplift?
- What are the earth processes that cause resources and mineral deposits?

Problem 4) Evolution of Continents

- Societal Impact
 - Exploration for ore deposits
 - Societal wonder about what created the material they live on
 - Help people to discover the subsurface the way they now investigate the surface via google earth

Additional Problems

- We need to determine or estimate a 3D earth model to deterministically predict path effects on ground motions to high enough fidelity for engineered structures and for precise nuclear monitoring
- To better characterize normal and anomalous in the Earth's crust, we need more uniform mapping of its structure
- Seismology can lead the transition from providing technologies for exploration of nonrenewable resources to technologies for exploration of cleaner energy sources

Importance to Earth and other sciences

- Earth and other sciences:
 - hydrology
 - economic geology
 - volcanology, geochemistry, petrology
 - tectonics and structural geology
 - mineral physics
 - rock mechanics
 - fluid mechanics
 - structural engineering
 - biology at depth

Importance to Earth and other sciences

• Importance:

- In situ measurements of physical properties in difficult or impossible to access parts of the Earth
- Surficial geologic techniques tell us about area,
 - 3-D velocity structure can tell us about volumetric distribution
- 4-D examinations of how Earth structure evolves over time is needed to better connect it to the broader spectrum of Earth processes

Data Recording

- More: sensors, coverage, channels
- Cheaper seismometers/OBS/arrays
- All receivers should be (at least) 3 component
- Hybrid passive/active surveys (4D results)
- The "Perfect" seismometer: Zero mass, zero power, infinite band, real-time telemetry, biodegradable
- Integrated sensor observatories (seismometer, strainmeter, tiltmeter, barometer, ect.)
- Applications to planetary seismology

Datasets

- Database and dataset preservation from industry and other sources (i.e., industry data mining)
- Model standards, not just common data formats
- Balance between active and passive techniques
- Alternatives to traditional seismometry
 - Space-based (i.e., INSAR)
 - Ground and near ground-based (i.e., laser-based, radar-based, optical interferometry)

- Improved analysis methods
 - Complete 3D wave methods
 - Multiple scattering approaches
 - Bridging the gap between region and global modeling
 - Integration of very different datasets

• Facilities

- Databases (storage, integration, interpretation; quicker access)
- Source facility (to complement receiver facility)
- Computing (e.g., full wavefield analyses)

Education and Collaboration

- Training future generations for stewardship of Earth
- Deeper connections with elementary/junior high/high school sciences
- University-industry partnerships
- Enhanced international collaborations

Funding

- Need to generate new funding models with nontraditional partnerships
- Federal (NSF, DoD, DoE, FEMA, NASA)
- Industry (natural resources)
- Foundations

