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Outline:

* Monitoring: What, Why, How

* 4 Areas of science underpinning monitoring
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What is seismic monitoring?

= Applied Seismology
= Using observables to make inferences about Earth events

= Listening to the Earth

Listening to the Earth

ParkeHarrison, Robert and Shana, b.1968/64

21st Journal of Contemporary Photography Vol. Il, 1999
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Seismically listening to the Earth: What can we hear?

Farth Surface Displacement Spectrum
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Seismically listening to the Earth: What can we hear?

Farth Surface Displacement Spectrum
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Why are we listening/monitoring?

= Natural Hazard Response and Mitigation
= Earthquakes
* Tsunamis
= Volcanoes
= Other (e.g. rockfalls, landslides, bollides, glacier movement, etc,)

= Natural Resource Management (hydrocarbons, minerals, geothermal)
= Exploration/Assessement
= Extraction hazard and regulatory monitoring

= Nuclear Explosion Monitoring
= Treaty Verification

= Forensic Applications
= Accidents (e.g. factory/gas line/munitions explosions)
= Terrorism

= Military/Security Applications
= Bomb damage assessment
» Border/Facility monitoring (e.g. tunneling)

= Waste/Storage Management
= Carbon Sequestration (e.g. 4D)
* Nuclear (e.g. Yucca Mountain)
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How do we monitor?

Signals

Real-time operational monitoring systems
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This is where Seismological advances can dramatically improve monitoring:

* Lowering thresholds and increasing throughput

* Improving accuracy and precision

* Identifying new kinds of sources
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How do we improve our monitoring capabilities?

Earth Monitoring Science
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In Source Physics we must understand how target and
background sources generate signals

satellite
time series signal signals
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Example: moment tensor full waveform modeling

at intermediate periods can separate source types

Moment tensor full waveform 1-D modeling identifies the seismic signal associated with the
August 2007 Crandall Mountain coal mine accident as due to a cavity collapse
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In Signal Propagation we must understand and
predict the media’s effect over a wide frequency range

Earth Monitoring Sci

event: GLEN_ELLEN filter: 0.03 - 0.25 Hz
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Rodgers et al, 2008
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Example: 3D wavefield calculations will help explain
and predict complex observations

Example of large 6-8 Hz Pn/Sn variation in the Middle East

Two mb~4.5 events about 550 km away

45°E 50°E 55°E 60°E 65°E

February 2005 Kerman earthquake simulations by A. Rodgers et al. on BlueGene/L
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Example: 3D wavefield calculations are becoming
more feasible

Number of Points
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For Sensors we want to improve sensitivity, and lower
power requirements and device costs

Current Sensors Future Sensors

Imperial College Prototype MEMS seismometer
(AFRL BAA FA8718-06-C-0011)
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Dense sensor deployments allow non-aliased
wavefeld sampling and new kinds of processing

12 September, 2007 - Sumatra - Magnitude 8.4
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In Signal Analysis we want to exploit all available signal
within the context of empirical and model data

Current Practice Future Practice
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Cross-correlation and matched-field examples

18,886 events (BLUE) at 363 stations (GREEN).

17% (RED) correlate (CC> 0.5) with at least
one other event at station WMQ
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Schaff and Waldhauser, 2007

Matched Field is “adaptive optics” for seismology
- Data processed coherently in space, but not in frequency
— Distinguishes closely-spaced sources heretofore inseparable

— Works where waveform correlation methods fail
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Grand Challenge 1: More Data

Seismology is a data-driven science: We need to
increase the available data by orders of magnitude

Middle East Example:

= Currently existing and
openly available

20° 25° 30° 35° 40° 45° 50° 55° 60" 65
Network: ME.OPEN

© Short-Period
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Grand Challenge 1: More Data

Seismology is a data-driven science: We need to

increase the available data by orders of magnitude

Middle East Example:

= Currently existing and
openly available

» National Networks not all
openly available

25° 30° 35°
Network: ME.REG

© Short-Period
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iven science

More Data
data-dri
ilable data by orders of magnitude

logy is a
the ava

iISsmo
iIncrease

Se

Grand Challenge 1

KRR
SRR au
RIS A
AAAAAAAAAAAAaaAAAaA&AA

IR IR |
2RI R |
IR ‘fp\\
999, 9993995d 1
¢Ek IR :
R RIRRIRIRCRIZRIK!
RIS
! AAAAAAA LRI A .
>, AAAAAAMMAAAAAAAAAAAA -

T AAAAAAAAAAAAAAAA DR R
AT AA¢m..m;,AAAAAAAAAAAMMAAAAAAAAfﬁAAAAa LB
SIS <IERT LRI <K< SRR -

AAAAAAAAAAAAAAazAa <<
RRRRERRIEK 4
A9 IITEL

-
r

.K*Wm AA_AAAA.A&:
LR RIS
&M. RRRIRERIRIRIRIRIIRILERIZ)

‘ AAAAaAAAA AA
RIS AM !
A
SKKKKISRIKIKIKIK AA AA-
.nAAAl ,.uAAAAAAAAAAAA <<
RIS I R R AAAAA-
BRI RIS
.AAMMAAAAAaKAAAAAAAAAAaﬂAnAAA
- AKIRRIKIIL] AAAAAAAAAAAAAA-
FARIIRKRIIKISRRT AAAAaaa4
] < KRR AA AA
KKK e R 1L A -
QRIS

e IKIKKIKH KRR KRR RRISR ..A_ AA-
- A\.AAAAAAAAA&AAA_A_A_A_A_A_A_A_ AA_AAA
[Ts] [=] [fy] =] [Te] (=} is] =]
=+ =+ ] s8] o o —-— —
g 3
p d wid
E < 2
g O o @ 5
o @  ®©
X X = 80>
L £ P~ = - ©
B o Qo s < E
" X2 23 = g <
a e a s T
w > “® o ® ©
= > © > o 5 & .
(h] c ®© (4] .
=2 c o w < :
5 2> 8> 5 ¢ o
T 55 w5 5
mw O a Z o '
= O = O n

Walter LRSPS Slides / 20

60"

25° 30° 35° 40° 45° 50° 55°
4 Broadband
= Short-Period
4 Hypothetical

Network: ME.REG

2U



Grand Challenge 2: Better data exploitation

With nearly all the world’s continuous seismology data online,
what new kinds of processing/analysis should we be doing?
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Goals: Use all time-bandwidth
available and compare to all
empirical and model data
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Grand Challenge 3: Putting it all together

How do we meld many disparate/conflicting results
into a single global reference model for the Earth?

In principle this is just multi-set inversion but how to do it practice?
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Grand Challenge 3: Putting it all together

How do we meld many disparate/conflicting results
into a single global reference model for the Earth?

One suggestion - Take a page from the Climate Modelers: DOE Office of
Science sponsored PCMDI: “Program for Climate Model Diagnosis and
Intercomparison”

How about a TERRA Program: “Testing Earth Realizations and
Reconciling Anomalies?
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Summary

= Monitoring is ultimately advanced by its ability to predict the
observables (noise and events)
 Source Physics
Signal Propagation
Sensors
Signal Analysis

= The long-range goal is end-to-end prediction capability across the full
spectrum of observable seismic amplitudes and frequencies

= Some Grand Challenges:

« How do we expand worldwide data?
- National Networks
- New deployments

 How do most effectively process the seismic data we observe?
- empirical+model based full time-bandwidth processing

« How do we create a 3-D Earth Reference Model for Monitoring?
- Something like a TERRA Program to evaluate and reconcile models
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