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varying, the others factors can produce rapid lateral changes in ground acceleration over a 
small region, which in turn leads to significant variation in seismic hazard. This is 
currently characterized by maps of Vs30 (shear wave speed in the top 30 m) (Wald and 
Mori, 2000) as determined by borehole measurements or topographic proxies (Allen and 
Wald, 2009), and the Long Beach region is covered by only two zones on these maps. 

!
Figure'2.'Earthquake'Recording.'The!event!is!the!Ml!2.5!Carson!earthquake!(2011/05/02)!
located!approximately!5!km!to!east!of!the!network.!The!left!panel!is!a!snapshot!of!a!movie!
the!earthquake.!Note!the!break!up!of!the!wave!front!along!the!NIFZ!(see!Fig!1).!The!right!
panel!is!the!maximum!acceleration!at!each!sensor!from!this!event.!The!network!is!calibrated!
by!matching!to!the!broadband!station/!accelerometer!at!STS!(see!Fig!1).!
 
The Long Beach array is crossed by the Newport-Inglewood Fault Zone (NIFZ), a system 
of right-lateral strike-slip faulting that accommodates a small portion of the plate 
boundary deformation. The NIFZ has a tectonic slip rate of 0.6 mm/yr and, given its total 
length, it is thought to be capable of producing an earthquake as large as M7.4, which 
could have a stronger impact on the Los Angeles metropolitan area than a M8 earthquake 
on the San Andreas Fault. A moderate earthquake on the NIFZ also poses a major hazard. 
The NIFZ was the source of the M6.4 1933 Long Beach earthquake, the second most 
deadly earthquake in California history. Despite its moderate magnitude, severe damage 
to school buildings during this event led to the passage of the Field Act, a California state 
law that now regulates the building construction practices for public schools. It is also the 
first earthquake recorded by strong motion instruments.  

 
We propose to develop high-resolution site amplification maps for the City of Long 
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more in the 0-1 magnitude range. The noisy urban environment raises the detection 
threshold of the SCSN (M 2-2.5) in this area. Running an automated detector for 
conventional seismic networks (Nippress et al, 2010) on one week of Long Beach data 
yielded about 20 events within the array and in its immediate surroundings (Figure 8). 
We propose to enhance the earthquake detection capability by continuously back-
projecting the Long Beach array data onto the Newport-Inglewood Fault plane.  
 
The basic principle is to stack a certain waveform attribute, usually its envelope, after 
time-delaying the signal of each sensor by the wave travel time from the target source 
area. This will essentially produce a movie of the slip on the fault over the 6-month 
deployment period of the array to reveal the organization of the micro-seismic activity of 
the NIFZ. This has never been tried before because there has never been a suitable 
dataset. There are a number of variants of the method that differ by the quantity that is 
being stacked, the amount of smoothing and the data normalization (Baker et al, 2005; 
Gharti et al, 2010; Kao and Shan, 2004). Techniques like the Source Scanning Algorithm 
(Kao and Shan, 2004) have been specifically developed and tuned for real-time 
monitoring of tectonic tremors.  
 

 
Figure 9. Backprojection onto the plane of the Newport-Inglewood Fault Zone 
(NIFZ). On the right are snap shots of the backprojection at selected times over a 600 
sec period.  On the left is an enlargement of the 320s snapshot display in the 
approximate location of the NIFZ.  The white star is the location of one of the events 
identified in Fig. 8. 
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[20] The other three events produced relatively noisy verti-
cal component receiver functions characterized by ringing.
To enhance potential scattered phases in these vertical compo-
nent receiver functions and facilitate comparison, we stack
them in 200m wide distance bins that are 50% overlapping
(Figure 10). The northwest events show a common arrival at
6 – 7 s, which has a phase velocity of about 7.5 km/s. Other
arrivals are well defined for event 1 during the first 2 s and in
the northwestern half of the array, but unlike the 6 – 7 s arrival
these are not consistently observed for event 3. As expected,
the stacked image for event 2 better isolates the two strong
arrivals that are apparent in Figure 9c. Near the maximum

end of the distance range for event 2, the stacked image is
characterized by ringing on account of low station density in
the northeastern part of the array at that time (Figures 5a
and 5b). The presence of two phases that arrive just behind
the P wave arrival for event 2 and with a different phase
velocity is consistent with the beating pattern observed in
the amplitude map (Figure 7b). The vertical component
receiver functions for event 4 show strong ringing even
when stacked in distance bins so they have limited utility
for confirming the arrivals in the event 2 receiver functions.
There is some consistency between the positive arrivals
with about 5 km/s phase velocities in the event 2 receiver
functions and the event 4 receiver functions, but for event
4 these phases are not as coherent across the distance range
and many other phases with similarly large amplitudes
are present.
[21] The phase velocity, polarity, and lag times of the two

positive arrivals in the event 2 receiver functions place
constraints on their origin. The arrivals cannot be P-to-
Rayleigh conversions from topography or strong velocity
heterogeneity near the surface [e.g., Bannister et al., 1990;
Gupta et al., 1990; Clouser and Langston, 1995] because
Rayleigh wave velocity at frequencies near 1Hz is <1 km/s
in the Long Beach array [Lin et al., 2013]. Other vertical
component receiver function studies isolated P waves that
reflected at the surface and again at an abrupt interface at
depth before arriving at the receiver (PpPDp), and these are
sometimes referred to as virtual reflections because they
can be used similarly to P waves created by controlled
sources within an array. For reflection from a positive
impedance contrast at depth negative polarity PpPDp arrivals
are expected in vertical receiver functions and have been
robustly detected in several settings [e.g., Li and Nabelek,
1999; Bostock, 2004; Tseng and Chen, 2006; Mercier
et al., 2006; Yang et al., 2012]. Here, the strongest phases
we isolate are positive. If these are PpPDp phases they must
originate from negative impedance contrasts at depths of
about 9 – 18 km. While it is conceivable that negative
impedance contrasts exist, it would be unusual to only detect
negative contrasts despite the fact that velocity generally
increases with depth.
[22] Rather than the arrivals in the vertical receiver

functions being P reflections, it is possible that they are P-
to-s conversions (Ps). Steeply dipping interfaces can create
Ps conversions that have a different phase velocity than the
P wave. Using radial receiver functions from an array with
~2 km aperture in the foothills of the Kopet Dagh mountains
in Turkmenistan, Abers [1998] identified Ps arrivals with a
phase velocity of ~3 km/s. He used an inversion of receiver
functions from 29 teleseismic events to determine that the
origin of the phases was closely correlated with faults that
separate the Kopet Dagh mountains from a 10 – 18 km deep
sedimentary basin. Here we have useful receiver functions
from only three events so we did not conduct similar array
processing. However, the results from Abers [1998] under-
score the possibility that dipping velocity discontinuities
can produce Ps phases with substantially different phase ve-
locity than teleseismic P waves (13 – 22 km/s). Additionally,
Ps phases generated at steeply dipping interfaces are likely
to have significant amplitude in vertical component data
such as we use here. Forward modeling of the Long
Beach travel time residuals presented in section 6 provides

(a)

(b)

(c)

Figure 9. Vertical component receiver function analysis for
event 2. (a) Event 2 seismograms aligned by cross correlation
and sorted by distance. (b) Stack of the aligned traces. (c)
Vertical component receiver functions, which result from
deconvolving the stacked trace from each trace in Figure 9a.
The positive phases that are coherent across most of the
distance range have phase velocities of about 5 km/s.
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