Challenges of Ocean Bottom Broadband Deployments

Packaging this delicate Guralp 3T broadband seismometer

into something

that can survive a 5000m fall to the ocean bottom,

level and unlock itself when it gets there,

and tell us which way it is heading.

First generation Guralp 3T sensor sphere

- Applied Geomechanics Model 900 tilt sensor
- PNI Corp. Vector 2Xe compass
- Compass uses SPI interface
- Compass frequently does not give any reading
- Compass is discontinued by manufacturer
- Tilt and heading periodically recorded to Compact Flash card

First generation Guralp 3T sensor sphere

- Uses gravity levelling with disk brakes to maintain rigidity
- Ultrafine wires used through Gimbal berrings
- Proven mechanical design, tested at Harvard Vault

Second generation Guralp 3T sensor sphere

- Same mechanical levelling system
- Updates to obsolete parts, and addition of vacuum sensor
- Same Applied Geomechanics Model 900 tilt sensor (now Jewell Instruments)
- Honeywell HMR3100 compass
- Compass uses simpler UART intererface
- Compass is much more reliable than the older PNI compass
- Compass is now discontinued by manufacturer

Orientation measured by compass versus derived from Earthquake for Cascadia Year 1

Third generation Guralp 3T sensor sphere?

- Make all spheres the same
- Make deployment more fool proof
- Make "Emergency Guralp Lock" more fool proof
- Possibly change to active levelling system?
- Improve reliability of compass heading

Ocean Server Technology Inc. OS5000 Compass

- One of the new compasses we are evaluating for replacement of compass in Guralp 3T sensor sphere
- 0.1° heading resolution
- 0.5° RMS heading accuracy
- Includes tilt sensor

