WHOI OBS Battery Systems

Alan Gardner, Woods Hole Oceanographic Institution

Many factors lead to a proliferation of battery models

Function of battery:

Acoustic release

Clock keep-alive

Recovery aids

Form factor of instrument:

7" ID pressure tube

17" glass spheres

12" glass spheres

Experiment duration and sensor load

72 days with geophone

7.5 months with geophone

1 year with Guralp3T and Episensor(14 individual batteries)

1 year with Trillium Compact(7 individual batteries)

Battery chemistry

Lithium Primary (LiSOCl2)

Alkaline

Lithium Primary (LiSO2Cl2)

Comparison of lithium chemistries

Tadiran

- Lithium Thionyl Chloride (LiSOCl2)
- Uses "Hybrid Layer Capacitors" for pulse handling and passivation
- Light weight
- Less expensive

Electrochem

- Lithium Sulfuryl Chloride (LiSO2Cl2)
- High intrinsic current capability
- Prone to passivation
- Heavy
- More expensive

Comparison of lithium chemistries

Tadiran

- More energy per cell
- Higher specific energy density
- Very long lead times
- UN Testing charges
- Difficult design process

Electrochem

- Less energy per cell
- Lower specific energy density
- ~1 month lead times
- Typically no UN Testing charges
- Easy to work with

Smackdown by the numbers

	Tadiran	Electrochem	
Energy	100	87.5	W-Hr
Length	124.5	111.4	mm
Diameter	32.9	33.5	mm
Weight	195	213	g
Volume	108	98	сс
Cost	42	65	USD
Energy Density	0.926	0.893	W-Hr/cc
Specific E.D.	0.513	0.411	W-Hr/g
Energy to Cost	2.38	1.35	W-Hr/USD

Energy based on conservative reading of datasheets, extensive conversation with manufacturers, and decades of on bottom time

Tadiran weight and volume include 1/3 HLC

Be careful with capacities

- Wow! 40Ah * 3.6V = 144 Wh!
- Well, not really
- Check actual discharge currents and temperature
- Be conservative!

MODEL TL-5937

International size reference: DD. ER32L1245

TECHNICAL DATA

4.0 3.5

3.0

(Typical values @+25°C for batteries stored for one year or less)

- Nominal capacity @ 10 mA, to 2V 3.6 V
- Weight 188q (6.631 oz) Volume 105 cc
- Operating temperature range -55°C to +85°C

DISCHARGE CHARACTERISTICS @ +25℃

33 Ω ~100 mA

1100 Ω 3.6 KΩ 6.8 KΩ ~3 mA ~1 mA ~0.5 mA

(39.0 Ah) (35.7 Ah) (34.2 Ah)

U.L. Component Recognition, MH 12193

Ø4.4Max.

SUFFIX- /S STANDARD SUFFIX- /T SOLDER TABS

What about rechargeables?

	Tadiran	Genasun	(Gli-12-100)
Energy	100	1400	W-Hr
Length	124.5	319	mm
Diameter	32.9	266	mm
Width	N/A	175	mm
Weight	195	14000	g
Volume	108	14850	сс
Cost	42	2150	USD
Energy Density	0.926	0.094	W-Hr/cc
Specific E.D.	0.513	0.100	W-Hr/g
Energy to Cost	2.38	0.65	W-Hr/USD

Data from Genasun web page

- WHOI has 11 page Lithium battery safety procedure
- All employees take biennial Battery Pack Safety course

Lithium batteries need to be treated with extreme care at all stages from design through disposal

- Lithium battery safety is a big deal
- A battery pack in one of these instruments exploded on deck!

- Manufacturing fault
- Current procedures should prevent recurrence
- Fortunately no one was injured

- Protection diodes
- Fuses: in cell, in pack, on board
- Ensure excess pressure can vent
- Pressure sensors to watch for outgassing

Automated Battery Tester

- We test 100% of our Lithium batteries prior to installation
- Check voltage under load (functional)
- Check for diode (SAFETY!)
- No operator error

Proper storage:

- Flammables cabinet in lab
- Battery storage van offsite
- Original packaging where possible

Proper disposal:

Shipping concerns with Lithium primaries

- US government regulations 49 CFR
- International Maritime Dangerous Goods Code controls seagoing shipments
- Lithium primaries prohibited from passenger aircraft
- Limits on total Lithium content per battery
- Technically can't ship exhausted cells

Shipping concerns with Lithium primaries

- UN testing required for all Lithium primary shipments
- 8 packs destructively tested

After short circuit test

Modular pack design

- Easier to handle
- Install more packs to increase energy without retesting
- Allows large aggregate packs to be shipped
- Requires monitoring of each pack

Monitoring individual battery packs

