Microseismics from fiber-optic distributed acoustic sensing: the near-field strain signals and the guided waves

Bin Luo

Colorado School of Mines

December 1, 2020 AGU DAS Workshop

DAS in Hydraulic Fracturing

RCP[◊]

2

RCP.MINES.EDU

Jin and Roy (2017)

Overview

Microseismic Guided Waves

- Guided wave properties
- Seismic inversion of guided wave dispersion curves*
- Constraining microseismic event depth*

Microseismic Near-Field Strain Signals

- Analytic displacement of a moment tensor point source
- Synthetic vs. field data*

*Eagle Ford project data provided by Devon Energy Corporation and Penn Virginia Corporation

Microseismic Guided Waves

Microseismic Data

Fiber optic distributed acoustic sensing (DAS) in Well A

- 14 m gauge length
- 8 m channel spacing
- 2000 Hz sampling rate

RCP **o**

Guided Waves in 3D

Side view

Plan view

Long offset channels -> Dominant guided P-SV waves

۰

High Vs

Low Vs

 $k_h^{P-SV}(\omega)$

Application 1: Seismic Inversion

RCP **0**

Luo et al., under review

Application 2: Constraining Event Depth

Microseismic Near-Field Strain

Observation

DAS Strain Rate

DAS Strain

Moment Tensor Point Source Solution

Strain Microseismics (Rodriguez and Wuestefeld, 2020)

In homogeneous isotropic media, the displacement **u** of a moment tensor point source M_{jk} is:

$$u_{i}(\mathbf{x},t) = \frac{1}{4\pi\rho} \left[\frac{1}{r^{4}} \left[15\gamma_{i}\gamma_{j}\gamma_{k} - 3\delta_{jk}\gamma_{i} - 3\delta_{ik}\gamma_{j} - 3\delta_{ij}\gamma_{k} \right] \int_{r/V_{p}}^{r/V_{s}} \tau M_{jk}(t-\tau)d\tau \right]$$

$$+ \frac{1}{4\pi\rho} \left[\frac{1}{r^{2}} \left[6\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{jk}\gamma_{i} - \delta_{ik}\gamma_{j} - \delta_{ij}\gamma_{k} \right] M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$- \frac{1}{4\pi\rho} \left[\frac{1}{r^{2}} \left[6\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{jk}\gamma_{i} - \delta_{ik}\gamma_{j} - 2\delta_{ij}\gamma_{k} \right] M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{4\pi\rho} \left[\frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(6\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{jk}\gamma_{i} - \delta_{ik}\gamma_{j} - 2\delta_{ij}\gamma_{k} \right] M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{4\pi\rho} \left[\frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{jk}\gamma_{i} - \delta_{ik}\gamma_{j} - 2\delta_{ij}\gamma_{k} \right] M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{4\pi\rho} \left[\frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{jk}\gamma_{i} - \delta_{ik}\gamma_{j} - 2\delta_{ij}\gamma_{k} \right] M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{4\pi\rho} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right) M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{4\pi\rho} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right) M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right) M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right) M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right) M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right) M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right) M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right) M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} - \delta_{ij}\gamma_{k} \right] M_{jk} \left(t - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} \right) M_{jk} \left(\tau - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} \right) M_{jk} \left(\tau - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left(\gamma_{i}\gamma_{j}\gamma_{k} \right) M_{jk} \left(\tau - \frac{r}{V_{p}} \right) \right]$$

$$+ \frac{1}{r^{2}} \left[\frac{1}{r^{2}} \left[\frac{1}{r^{2}$$

Aki and Richards (2002)

Radiation pattern -> Source orientation Source time function -> Source process

NF, IF, and FF

Synthetic DAS Strain with 8 m spacing and 14 m GL

RCP.MINES.EDU

RCP **o**

Field Data Example

Moment tensor from surface array: Dip 88°, strike 0° from ideal perpendicular fracture

RCP.MINES.EDU

200 400 Distance Along Fiber (m)

Conclusion

Downhole fiber-optic cable with DAS technique enables close-up observation of the microseismic phenomena

Microseismic guided waves

- Seismic inversion of dispersion curves for thickness, shear wave velocity, and VTI parameters of the shale layer
- Constraining event depth (inside/outside the shale reservoir) based on the occurrence of guided waves

Microseismic near-field strain signals

- Exhibiting a ramping amplitude between P and S direct arrivals
- Spatial variation (source orientation) and temporal variation (source process): potential values for monitoring of hydraulic fracturing operations

Acknowledgments

RCP.MINES.EDU

RCP **o**