DAS and Big Scientific Data Analysis

Distributed Acoustic Sensing Virtual Workshop and Tutorial August 10, 2020

Karianne J. Bergen

Data Science Initiative Postdoctoral Fellow, Harvard University Assistant Professor, Brown University (January 2021)

Harvard John A. Paulson School of Engineering and Applied Sciences

Massive data sets in earthquake seismology

Long Duration (Large-T) >10 years continuous waveform data

miter for the state of the stat

[Nakata et al., 2015]

Big Networks (Large-N) 1000's of sensors

New data sources: DAS arrays

Massive data sets in earthquake seismology

DAS and the challenges of "big data" analysis

Volume: 100 GB to 10 TB per day for a single DAS array

- Extracting information automated analysis, scalability
- Velocity: Near real-time analysis, e.g. for urban hazard assessment
 Streaming data fully automated (no configuration)
- Variation in DAS systems; seismometers, geophones
 - Sensor fusion combining DAS with other sources

Veracity: Data quality: noisy environments, poor coupling

• Automatic data cleaning, quality control, denoising

DAS and the opportunities of "big data" analysis

Novelty: New data source requires new algorithms

- Existing methods for seismic analysis may not account for:
 - Data volume
 - Data quality (vs. purpose-built scientific sensors)
 - Measurements distributed (vs. point), directional sensitivity
 - Flexible array geometry
- Insufficient labeled data unsupervised methods, transfer learning / domain adaption

Algorithms for big scientific data

- Efficient algorithms: linearly, sub-quadratically scaling with data volume
 - randomized algorithms, streaming algorithms, etc.
- Data-driven algorithms: large-scale machine learning (e.g. deep learning)
- More computation: parallel, distributed computing
- Data reduction, data compression
- Custom, task-specific algorithms

Extremely Big Scientific Data (outside geophysics)

Particle Physics

Large Hadron Collider

- Generates too much data to store:
 I billion collisions/s → I petabyte/s
- Data filtering: "interesting" events only (~1000 events/s) stored for analysis

Astronomy

Square Kilometer Array (Phase I)

- Processing **reduces data size**, increases information content.
- Real-time processing of raw data, supercomputers generate science data products (600 PB/year)

Data-driven algorithms: recent work explores machine learning for improved filtering, classification of events at LHC

Algorithms for big scientific data

- Efficient algorithms: linearly, sub-quadratically scaling with data volume
 - randomized algorithms, streaming algorithms, etc.
- Data-driven algorithms: large-scale machine learning (e.g. deep learning)
- More computation: parallel, distributed computing
- Data reduction, data compression
- Custom, task-specific algorithms

What is Machine Learning?

Machine learning (ML)

a set of tools for recognizing complex patterns and building predictive models *automatically from data*

• linear regression, logistic regression, PCA

Building models from examples (Supervised Learning)

Finding patterns in data (Unsupervised Learning)

Data X

Data only (no labels)

Unsupervised Learning Algorithm (e.g. PCA, k-means)

features in data

Structure in X

Groups of similar objects

Model of data distribution

For specific examples of ML applied to solid Earth geoscience:

GEOPHYSICS

Machine learning for data-driven discovery in solid Earth geoscience

Karianne J. Bergen^{1,2}, Paul A. Johnson³, Maarten V. de Hoop⁴, Gregory C. Beroza⁵*

Algorithms for big scientific data

- Efficient algorithms: linearly, sub-quadratically scaling with data volume
 randomized algorithms, streaming algorithms, etc.
- Data-driven algorithms: large-scale machine learning (e.g. deep learning)
- More computation: parallel, distributed computing
- Data reduction, data compression
- Custom, task-specific algorithms

FAST: scalable "Large-T" earthquake detectionData mining approach: extracting patterns from large data sets

• What pattern? Repeating or similar waveforms

----- 2013-Oct 2010-Sep 2010-Sep 2009-Mar 2008-Apr

Exact search for similar waveforms: quadratic scaling – small data only

FAST: scalable "Large-T" earthquake detection

Data mining approach: extracting patterns from large data sets

• Scaling to big data? Locality-sensitive hashing (LSH) for similarity search

Find duplicate web pages Search for copyright content Identify songs

FAST: efficient similarity search with LSH Key ideas:

- I. Searching a well-organized data collection is faster.
 - LSH clusters together similar waveforms for quick retrieval.

2. Sacrificing (a little) accuracy can substantially reduce runtime. FAST uses a *fast, approximate* rather than *slow, exact* similarity search.

Exact search:7 days of datain215 hours runtimeFAST:10 years of datain3–16 hours

[Rong et al., PVLDB 2018; Yoon et al., BSSA 2019] K.J. Bergen | DAS 2020 Workshop

DAS and Big Scientific Data analysis

- DAS produces larger data sets than traditional seismic arrays
- Solutions will leverage modern data science & computing:
 - Machine learning
 - Efficient algorithms
 - Parallel and distributed computing, data reduction, etc.

Questions?

Available on this afternoon (4pm ET) Zoom Meeting ID: **991 7999 4192**

karianne bergen@brown.edu