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Massive data sets in earthquake seismology

Long Duration (Large-T)
> 10 years continuous waveform data
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New data sources:
[Nakata et al, 2015] DAS arrays
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[Martin et al,, 2017/]
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Massive data sets in earthquake seismology
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DAS and the challenges of “big data’ analysis

Volume: 100 GB to 10 TB per day for a single DAS array

* Extracting information — automated analysis, scalability

Velocity: Near real-time analysis, e.g. for urban hazard assessment

* Streaming data — fully automated (no configuration)

Variety: Variation in DAS systems; seismometers, geophones
* Sensor fusion — combining DAS with other sources

Veracity: Data quality: noisy environments, poor coupling

* Automatic data cleaning, quality control, denoising



DAS and the opportunities of “big data” analysis

Novelty: New data source requires new algorithms

* Existing methods for seismic analysis may not account for:
* Data volume
* Data quality (vs. purpose-built scientific sensors)
* Measurements — distributed (vs. point), directional sensitivity
* Flexible array geometry

* Insufficient labeled data — unsupervised methods, transfer
learning / domain adaption




Algorithms for big scientific data

* Efficient algorithms: linearly, sub-quadratically scaling with data volume
* randomized algorithms, streaming algorithmes, etc.

* Data-driven algorithms: large-scale machine learning (e.g. deep learning)
* More computation: parallel, distributed computing

* Data reduction, data compression

* Custom, task-specific algorithms




Extremely Big Scientific Data (outside geophysics)

Particle Physics Astronomy

Large Hadron Collider Square Kilometer Array (Phase |)

* Generates too much data to store: * Processing reduces data size, increases
| billion collisions/s = | petabyte/s information content.

* Data filtering: “interesting” events only * Real-time processing of raw data,
(~ 1000 events/s) stored for analysis supercomputers generate science data

products (600 PB/year)

Data-driven algorithms: recent work explores machine learning
for improved filtering, classification of events at LHC

[Nguyen et al. (2019); Radovic et al. (2018)] KJ.Bergen | DAS 2020 Workshop



Algorithms for big scientific data

* Efficient algorithms: linearly, sub-quadratically scaling with data volume
* randomized algorithms, streaming algorithms, etc.

{ * Data-driven algorithms: large-scale machine learning (e.g. deep learning) }
* More computation: parallel, distributed computing

* Data reduction, data compression

* Custom, task-specific algorithms




What is Machine Learning!?
Machine learning (ML)

a set of tools for recognizing complex patterns and
building predictive models automatically from data

Data-d ri
outcomes Ability to
generalize

* linear regression, logistic regression, PCA

e data
— |inear model
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Building models from examples (Supervised Learning)
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Finding patterns in data (Unsupervised Learning)
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Unsupervised
Learning Algorithm —}[ Structure inX]

(e.g. PCA k-means)
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Common patterns or SIS
features Iin data

Data only
(no labels)

Groups of
Model of data distribution similar objects
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For specific examples of ML applied to solid Earth geoscience:

GEOPHYSICS

Machine learning for data-driven
discovery in solid Earth geoscience

Karianne J. Bergen’?, Paul A. Johnson®, Maarten V. de Hoop*, Gregory C. Beroza®*
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Algorithms for big scientific data

r D
* Efficient algorithms: linearly, sub-quadratically scaling with data volume

< * randomized algorithms, streaming algorithms, etc. \

* Data-driven algorithms: large-scale machine learning (e.g. deep learning)
. /

* More computation: parallel, distributed computing

* Data reduction, data compression

* Custom, task-specific algorithms




FAST scalable “Large-T" earthquake detectlon
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FAST: scalable “Large-T" earthquake detection

Data mining approach: extracting patterns from large data sets

* What pattern? Repeating or similar waveforms
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Exact search for similar waveforms: quadratic scaling — small data only

Source: NCSN station CCOB.EHN KJ. Bergen | DAS 2020 Workshop



FAST: scalable “Large-T" earthquake detection

Data mining approach: extracting patterns from large data sets

* Scaling to big data? Locality-sensitive hashing (LSH) for similarity search

Find duplicate web pages You
Search for copyright content alt% I T e @
Identify songs SHazam
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FAST: efficient similarity search with LSH

Key ideas:

|.  Searching a well-organized data collection is faster.
LSH clusters together similar waveforms for quick retrieval.

2. Sacrificing (a little) accuracy can substantially reduce runtime.
FAST uses a fast, approximate rather than slow, exact similarity search.

Exact search: 7 days of data in 215 hours runtime
FAST: 10 years of data in 3-16 hours

[Rong et al,, PVLDB 2018; Yoon et al, BSSA 2019] KJ.Bergen | DAS 2020 Workshop



DAS and Big Scientific Data analysis

* DAS produces larger data sets than traditional seismic arrays

* Solutions will leverage modern data science & computing:

* Machine learning
* Efficient algorithms
* Parallel and distributed computing, data reduction, etc.
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Available on this afternoon (4pm ET)

Q u eSti 0 n S? Zoom Meeting ID: 991 7999 4192

karianne bergen@brewn,edu
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