

Laboratory and Flow Loop DAS Experiments

Aleksei Titov, Ph.D. Candidate, Colorado School of Mines contact info: <u>alekseititov@mines.edu</u> <u>linkedin.com/in/aleksei-titov/</u>

2020 Distributed Acoustic Sensing Virtual Workshop and Tutorial August 17th, 2020

Outline

- Linear Fiber Stretcher Experiments
 - DAS Response
 - DAS Spatial Resolution
 - DAS Temperature Response
 - DAS Dynamic Range
 - Conclusions
- Flow Loop Experiments
 - Doppler Effect and Eddy Tracking
 - Slug Flow Monitoring
 - Conclusions
- DAS is More Than Seismometer Array

Linear Fiber Stretcher Experiments

Aleksei Titov, Nate Lindsey & Jonathan Ajo-Franklin; AGU 2019

Special Thanks to Veronica Rodriguez Tribaldos, Julia Correa, Feng Cheng, Eileen Martin, Michelle Robertson, Yuxin Wu & Ge Jin

Linear Fiber Stretcher

ENVIRONMENT

FNFRGY

- Stretcher
 - Thorlabs actuator and optomechanical components
 - $\Delta \varepsilon = 2.7 \ n\varepsilon$
- Silixa iDAS DAS
 - $L_g = 10 \text{ m}$
 - dx = 0.25 m
- LUNA ODISI OFDR
 - dx = 0.0026 m
- Bare/ Buffered/ Hybrid Cables

DAS Response

ENERGY

ENVIRONMENT

Fiber Optics Research Program

DAS Spatial Resolution

ARTH

ENERGY ENVIRONMENT

Fiber Optics Research Program

6

DAS Temperature Response

• Estimated $\Delta \varepsilon / \Delta T \approx 11.4 \ \mu \varepsilon / ^{\circ}C$

DAS Dynamic Range

Mahar	jan e	t al.	(2018)
	Jan 6		()

 $\Delta \phi = \frac{4 \pi n \xi L_g}{\lambda} \varepsilon_z \text{, where } n \text{ is the refractive index, } \lambda \text{ is the probe wavelength, } \xi \text{ is the photo-elastic coefficient, } L_g \text{ is the gauge length (Hartog, 2017)}$ $\varepsilon_{Z_{max}} = \frac{\lambda \Delta \phi_{max}}{4 \pi n \xi L_g} = \frac{1550 nm}{4 \pi \cdot 1.45 \cdot 0.78 \cdot 10 m} \Delta \phi_{max} = 10.9 \cdot \pi \approx 35 n\varepsilon$

Linear Fiber Stretcher Experiments Conclusions

- Strain values extracted from DAS data are 20 to 30% smaller than the actual values
- DAS data are hardly influenced by temperature variation, and careful correction is needed
- The upper limit for a DAS system is about $35 n\varepsilon$ per time sample
- DAS is not only a strain-rate "acoustic" sensor but also a strain measurement approach for slow geodetic processes as well as a temperature sensor

Flow Loop Experiments

Aleksei Titov, Ge Jin, Yilin Fan, Kagan Kutun, Gary Binder, Jennifer Miskimins & Ali Tura; EAGE Fibre Workshop 2020, SPE 2020

Special Thanks to Ana Garcia-Ceballos, Lisa LaFlame, Steve Cole, Martin Karrenbach

Vertical Flow Loop

FMINES

COLORADOSCH

EARTH • ENERGY • ENVIRONMENT

Doppler Effect Approach

ENERGY 🌢 ENVIRONMENT

What Fluid is Flowing and How Fast?

$$c_{DAS} = \frac{382 + 322}{2} = 352 \text{ m/s}$$
$$v_{DAS} = \frac{382 - 322}{2} = 30 \text{ m/s}$$
Air, 30 m/s

 $v_{Flowmeter} = 28 m/s$

Approach is described in e.g. Finfer et al. (2014)

8

Eddies Tracking Approach

Gysling & Loose (2003)

Eddies found for f < 20 Hz:

- Asymmetric shape of F-K plot (propagation with the flow direction)
- Observed for different types of flow patterns

Approach is described in e.g. Finfer et al. (2014)

ENERGY ENVIRONMENT

Fiber Optics Research Program

Slug Flow

Taylor bubble (TB)

Liquid slug (LS)

Sluc

flow

- Real-time detection of such flow can prevent unnecessary cost (onset of liquid loading, electrical submersible pump damage, etc.)
- How we can use DAS to
 - Detect slug flow
 - Generate production log for slug flow
- What is the physics of acoustic and thermal energy generation, propagation, and attenuation?

Guet et al. (2006); Fan et al. (2019)

15

RTH

ENERGY ENVIRONMENT

Fiber Optics Research Program

Cross-Correlation (Water Only)

LFDAS data (< 0.5 Hz)

ENERGY 🌢

ENVIRONMENT

Cross-correlation with channel #20

• $v_T \approx 0.19$ m/s, similar to measured $v_w \approx 0.17$ m/s

Results of Cross-Correlation Analysis

- $v_T \uparrow as H_L \downarrow$. Effective pipe diameter for liquid fraction becomes smaller
- Heat exchange accelerates with f_B , due to increased turbulence

Velocities Extraction From LFDAS Data

Raw data

LFDAS data (< 0.5 Hz)

• $v_T \approx 0.075 \text{ m/s}$, is slightly higher than $v_w \approx 0.070 \text{ m/s}$

• $\widetilde{v_B} \approx v_B \approx 0.3 \text{ m/s}$

ENERGY • ENVIRONMENT

Fiber Optics Research Program

Multispectral Analysis & Bubble Size

• DAS can be used to estimate size of a Taylor bubble

Flow Loop Experiments Conclusions

- Flow profiling with DAS can be implemented using Doppler effect and Eddies tracking
- Thermal slug velocity extracted from DAS data and evaluation of thermal dissipation allows characterizing two-phase slug flow
- Multispectral analysis of DAS data allows tracking velocity and estimate the size of the Taylor bubble

DAS is More Than Seismometer Array

DAS as thermometer (10⁻⁵ °C)

Temperature Spatial Gradient °F/ft 0.0 0.1 0.2 0.3 600 200 400 0 200 400 600 Time (s) Time (s) Thermal DAS flow profiling Jin et al. (2019)

ENERGY ENVIRONMENT

OLORADOSCHC

Streamflow measuring Credit: Tim Merrick, USGS

21

DAS as Doppler current profiler DAS as sensitive microphone

Methane bubble Credit: BBC **Fiber Optics Research Program**

Acknowledgements

from RCP to:

Thank you to Phase XVIII Consortium Members

from LBNL to: Edna Bailey Sussman Fund, US DoD SERDP grant RC-2437, USDOE DE-AC02-05CH11231, NSF GRFP and LiXA

Thank you!

References

- Fan, Y., Pereyra, E., Sarica, C., Schleicher, E., & Hampel, U. (2019). Analysis of flow pattern transition from segregated to slug flow in upward inclined pipes. *International Journal of Multiphase Flow*, *115*, 19-39.
- Finfer, D. C., Mahue, V., Shatalin, S., Parker, T., & Farhadiroushan, M. (2014). Borehole Flow Monitoring using a Non-intrusive Passive Distributed Acoustic Sensing (DAS). In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
- Guet, S., & Ooms, G. (2006). Fluid mechanical aspects of the gas-lift technique. Annu. Rev. Fluid Mech., 38, 225-249.
- Gysling, D. L., & Loose, D. H. (2003). SONAR-based, Clamp-on Flow Meter for Gas and Liquid Applications. ISA EXPO, Houston, USA.
- Hartog, A. H. (2017). An introduction to distributed optical fibre sensors. CRC press.
- Jin, G., Friehauf, K., Roy, B., Constantine, J. J., Swan, H. W., Krueger, K. R., & Raterman, K. T. (2019). Fiber Optic Sensing-Based Production Logging Methods for Low-Rate Oil Producers. In *Unconventional Resources Technology Conference, Denver, Colorado, 22-24 July* 2019 (pp. 1183-1199). Unconventional Resources Technology Conference (URTeC); Society of Exploration Geophysicists.
- Maharjan, S., Numano, T., Habe, T., Ito, D., Ueki, T., Igarashi, K., & Maeno, T. (2018). Phase Unwrapping in Magnetic Resonance Elastography. Open Journal of Medical Imaging, 8(04), 111.
- Titov, A., Lindsey, N., & Ajo-Franklin, J. B. (2019). Quantifying Low-Frequency DAS Response: Findings from a Laboratory Stretching Experiment. *AGUFM*, 2019, S21G-0599.
- Titov, A., Jin, G., Fan, Y., Tura, A., Kutun, K., & Miskimins, J. (2020). Distributed Fiber-optic Sensing Based Production Logging Investigation: Flowloop Experiments. In *First EAGE Workshop on Fibre Optic Sensing* (Vol. 2020, No. 1, pp. 1-5). European Association of Geoscientists & Engineers.
- <u>https://www.usgs.gov/special-topic/water-science-school/science/how-streamflow-measured</u>
- <u>https://ourblueplanet.bbcearth.com/blog/?article=bubbles-the-size-of-basketballs</u>

