

Using Low-frequency Fiber-optic DAS for Slow Deformation and Geomechanical Monitoring

Verónica Rodríguez Tribaldos (and many collaborators)

DAS Virtual Workshop and Tutorial August 17th, 2020

DAS: Much More than a Broadband Seismic Array

DAS is a broadband sensor commonly used for seismological applications

- Active seismic exploration (e.g. VSP) f > 20 Hz
- Traffic noise interferometry f ~ 5-30 Hz
- Earthquake detection f < 1Hz</p>
- Hydraulic tests, long-term deformation periods > 100 s

DAS response is flat at low frequencies \rightarrow we can potentially measure near-DC strain

Lay and Wallace (1995)

Lindsev and Martin (2018)

Applications of Ultra Low Frequency DAS Analysis

- Hydraulic fracture geometry characterization Jin and Roy (2017), The Leading Edge
 - Experiment: DAS in monitoring wells during stimulation of an adjacent well
 - Acquisition parameters: spatial sampling of 1 m, gauge of 5 m, sampling frequency of 10 kHz
 - Processing: downsampling (1s) followed by median removal and low-frequency filtering (0.05 Hz)

Observations: fracture dynamics (opening/closure), stress shadow creation and relaxation...

Applications of Ultra Low Frequency DAS Analysis

- Strain at Earth tides frequencies Becker and Coleman (2019), Sensors
 - Experiment: measuring oscillatory strain in the μHz frequency range in a laboratory setting
 - Acquisition parameters: spatial sampling of 0.25 m, gauge of 10 m, sampling frequency of 1 kHz
 - **Processing:** conversion to displacement rate, calculation of mean amplitude over fiber and integration

Observations:

- Oscillatory signals at frequencies corresponding to half-day lunar tidal cycles (23 μHz)
- Strain magnitude 10 times larger (165,000 nε) than tidal-induced strains (23 nε)
- Question remains: can we use DAS to measure tidal strains in boreholes?

Case Studies

1) Monitoring Long-term Subsidence in an Induced Permafrost Warming Experiment

2) Tracking Hydraulic Fracturing at an Enhanced Geothermal System Experiment

Case Study 1: Monitoring Long-term Subsidence in an Induced Permafrost Warming Experiment

Verónica Rodríguez Tribaldos, Nate Lindsey, Aleksei Titov, Anna Wagner, Arthur Gelvin, Ian Ekblaw, Craig Ulrich, Barry Freifeld, Jonathan Ajo-Franklin

Monitoring Permafrost Degradation During a Controlled Warming Experiment

- Controlled permafrost thawing experiment at the US Army Corps of Engineer's Permafrost experiment Station in Fairbanks, Alaska
- 121 electrical heaters placed over an area of 10.5 m x 12.7 m
- Heating lasted from August 5th through to November 11th 2016

Wagner et al. (2018)

7

Monitoring Permafrost Degradation During a Controlled Warming Experiment

Monitoring instrumentation:

 4000 m-long 2D array fiber-optic cable for DAS, DSS and DTS

> Channel spacing = 1 m Gauge length = 10 m

- Thermistor arrays
- Electronic Distance Measuring (EDM)
- Lidar
- 10 DTS wells
- I Geophone array
- 2 Broadband seismometers
- 2 ERT lines
- 2 NMR wells
- Moisture content probes

DAS acquired between August 5th and October 4th

Wagner et al. (2018)

DAS Virtual Workshop and Tutorial - August 2020

Monitoring Permafrost Degradation During a Controlled Warming Experiment

- Temperatures were increased from slightly below 0°C to 25 °C
- The permafrost table was lowered by 1.25 m to 1.5 m

Wagner et al. (2018)

Evidence of Subsidence From Mechanical Deformation Measurements

- EDM and LiDAR measure surface subsidence of **up to 10 cm** over 4 months of heating
- Surface deformation observable starting ~ August 22nd

Wagner et al. (2018)

Monitoring Subsidence using Low-frequency DAS

Calculate the mean of all channels in profile A and subtract it from profile B to obtain "residual" subsidence signal

Negative strain associated with compression of the cable in the subsiding area starting ~ August 26th

Monitoring Subsidence using Low-frequency DAS

Calculate the **mean of all channels in profile A** and **subtract it from profile B** to obtain "residual" subsidence signal

Negative strain associated with compression of the cable in the subsiding area starting ~ August 26th

Monitoring Subsidence using Low-frequency DAS

Comparison with Distributed Strain Sensing (DSS) signals

Comparison with Electronic Distance Measuring (EDM)

Spatial Distribution of Strain

Case Study 2: Tracking Hydraulic Fracturing at an Enhanced Geothermal System Experiment

Verónica Rodríguez Tribaldos, Martin Schoenball, Chet Hopp, Yves Guglielmi, Jonathan Ajo-Franklin and the EGS Collab team

Strain Monitoring with DAS at the EGS Collab Experiment

- EGS Collab project: continuing sequence of meso-scale experiments aiming at improving understanding of hydraulic stimulations in crystalline rock for EGS
- Continuous monitoring of hydraulic fracture creation and stimulation using DAS (amongst many other techniques)
- Continuous ~2000 m long fiber-optic cable looping at bottom hole and going to the next borehole
- Grouted in 6 monitoring boreholes, free-hanging in coils in the drift
- Sampling rate 1 kHz or 10 KHz, 1 m channel spacing, 10 m gauge length
- Hydraulic fracture hits well E1-OT

Ultra-low Frequency DAS during Hydraulic Fracture Stimulation

Ultra-low Frequency DAS during Hydraulic Fracture Stimulation

Ultra-low Frequency DAS during Hydraulic Fracture Stimulation

Summary

- DAS is an extremely broadband sensor (mHz to KHz) that can be used for dynamic strain measurement (seismology), but also for geodetic/geomechanics-type observations
- **Extraction of low-frequency component** is relatively simple, little processing is required
- Quantification of strain amplitudes remains a challenge: effects such as instrumental drift and thermal strain affecting the cable need to be understood
- Best practices include instrument calibration, temperature monitoring and record at "reference/quiet sections" when possible
- More experimentation in varying fields of application, different instruments, different cables... is necessary!

Thanks for listening! Questions?

VRodriguezTribaldos@lbl.gov