DAS+ML.:

a seismic ‘listening’ revolution for
geoscience
WHITNEY J. TRAINOR-GUITTON ﬁ\R =W

EILEEN R. MARTIN, VIRGINIA TECH

VERONICA RODRIGUEZ TRIBALDOS, LAWRENCE BERKELEY NATIONAL LABORATORY
NICOLE TAVERNA, COLORADO SCHOOL OF MINES

VINCENT DUMONT, LAWRENCE BERKELEY NATIONAL LABORATORY

BIN LUO, STANFORD UNIVERSITY

COLORADOSCHOOLOFMINES




Array for Earthquake- and-Ambient-Noise
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Sladen et al. (2019). Distributed sensing of earthquakes and ocean-solid _ , ,
. . ) . Views of (A) before, (b) during and (c) after the construction of SR-1,
Earth interactions on seafloor telecom cables, Nature Communications, } , ) ,
ocated at the Richmond Field Station

10(5777). http://geomechanics.berkeley.edu/people/hubbard/
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W hy D AS+ I\/l I_? Time to Manually Interpret long/large DAS

- One week of recording = 604,800 seconds
:; 4 Interpretation : ~30 seconds for each 120
_ e 2 second “chunks”:
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f g 0.8 30 seconds (interpretation) * 5,040 chunks
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i = = 302,400 seconds (interpretation time)
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=42 hours of interpretation time

15-km-long fiber Reykjanes Peninsula, SW-Iceland

1 week of recording ~ 1 work week of

Jousset, P. et al. Dynamic strain determination using fibre-optic interpreting
cables allows imaging of seismological and structural features. Nat.
Commun. 9, 2509 (2018)

What about city-scale fiber?
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Timeline of key distributed vibration/acoustic sensing

Introduction to Introduction to First ML application  Early subsurface First ML application  First CNN applied First GAN applied
OTDR technology multipoint sensing  to fiber-optic data uses of DAS to DAS data to DAS data to DAS data

Barnoski & Jensen Harmer Lyons & Lewis Daley et al. Cao et al. Aktas et al. Shiloh et al.
10.1364/ 10.1177/ 10.1177/ 10.1190/ 10.1364/ 10.1117/ 10.1364/
A0.15.002112 002029408201500403  014233120002200504 tle32060699.1 ACPC.2015.ASu2A.145 12.2262108 OFS.2018ThE22
NEURAL FEASIBILITY OF PERIMETER CNN TREATS DAS GAN’S TO
NETWORKS FOR DAS DOWNHOLE MONITORING OF DATA AS 2D TO GENERATE
IDENTIFYING FOR DAS WITH DISCRIMINATE LABELED
POLLUTANT IDENTIFYING SUPPORT BETWEEN WALKING, TRAINING
SIGNATURES IN CO2 SIGNATURES VECTOR DIGGING, WIND SETS
WATER MACHINE ETC.
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Applications & Algorithms

33 Papers with DAS+ML since 2015

~20% subsurface

Microseismic Detection

Hydfaulic Fracture versus i
5.9% ~ 0 :
Data Production 80% a b'ove. grou nd :
5.9% applications :
Noise Removal [ . [, - - - - - - - - - - -’

Tracking

Infrastructure Health

Useful Review Papers:

Tejedor, J. et al. Machine learning methods for pipeline
surveillance systems based on distributed acoustic sensing:
A review. Appl. Sci. 7, 1-26 (2017).

Shao, L. Y. et al. Data-Driven Distributed Optical Vibration Sensors:
A Review. IEEE Sens. J. 20, 6224—-6239 (2020).
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DPN

GAN

k-means

PNN

SVM: Support Vector Machine
RVM: Relevance Vector Machine
RBF: Radial Basis Function

MLP: Multilayer Perceptron

GMM: Gaussian Mixture Model
CNN: Convolutional Neural Network

GAN: Generative Adversarial Network
DPN: Dual path network

W:



Challenges for subsurface DAS applications

Labeling Challenges Computing Power & Data Accessibility

We can’t directly see the earthquake tremors or

fractures opening! Tend to have longer fibers - > higher volume

synthetic
Real DAS  microseismic + ) . .
noise real noise Data collection (field) may be far from physical data
. . . . 0 Noise Examples ‘ Signal Examgle; Storage |Ocati0nS
confirmed microseismic o2 [T ErNALIRI SRR BB SR
event L

Concurrent Developments in:

* High Performance Computing
« CUDA

* GPUandTPU

Need and Potential for

Sl lTie e * Data lakes : avoid downloading

. = . *  Edge computing: processing alongside the sensor,
extracting only the useful information from massive

data streams

Binder & Tura (2020), CNN for automated microseismic detection in
downhole distributed acoustic sensing data and comparison to a surface
geophone array. Geophysical Prospecting, 68: 2770-2782.
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The Exciting Future of DAS+ML

GOAL: Improve DAS interpretability

fast and accurate labeling Evolution of probgbility of usable energy for 4 reference signal
types across 36 different models

White noise signal Coherant waves Non-coherent waves Saturated signals

domain-specific feature engineering

o prepping & choosing characteristics of the DAS
data

physics-based new pattern discovery
initial data quality control
improved efficient seismic processing

automated interpretation of events &
subsurface properties (e.g. geology)

Training epoch Training epoch

integration with other sensors Dumont, V., Tribaldos, V. R., Ajo-Franklin, J. & Wu, K. Deep Learning on Real
Geophysical Data: A Case Study for Distributed Acoustic Sensing Research.

(2020).
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