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Photo: Jackson (2004), Excavation of an Earth Mound, Bowie County, Texas


https://www.researchgate.net/publication/331454684_Excavation_of_an_Earth_Mound_Bowie_County_Texas

Posthole discussion series: mission

By pulling together the expertise of our community, we will learn
from combined previous experiences and recommendations going
forward, ensure future seismic posthole emplacements will be of
the highest quality possible, and will outline the areas ripe for
exploration and technical development.

Deep pockets of posthole emplacement expertise already exist in the seismology
community.
Let’s make this information discoverable, accessible, and actionable.



Posthole discussion series: goals

 Summarize the history, motivations, and developments of seismic posthole
emplacement for the seismology community and the public.

* Draw on the vast experience of seismic network operators and principal
investigators who have installed seismic sensors in postholes. Foster the
sharing of successes, failures, and lessons learned through technical
presentations and discussions on focused topics within seismic posthole
emplacement.

* Assemble examples of posthole emplacement sites that have publicly
accessible data and are sufficiently documented for reproducibility of
results. Known noise sources can be included.

* |dentify a set of recommended best practices for seismic posthole
emplacement.



Timeline and deliverables

 January 2021: Kickoff webinar and panel

* February - May 2021: Organize discussions of focused topics within posthole emplacement,
held every 3-4 weeks

* We warmly welcome topic suggestions and presenter self-nominations!
e June 2021: Solicit information on posthole emplacement sites and documentation.

 December 2021: Submit manuscript with a compilation of recommended best practices for
posthole emplacement. Publish archive of posthole sites and documentation.

Deliverables:

1. Adigital database of posthole emplacement sites with documentation suitable for ,
reproducing results (location, data a\(allablllt¥ epochs, materials, measyrements, narrative
construction/install descriptions or videos, site photos, diagrams - map/cross section,
known noise sources).

2. A manuscript or chapter in New Manual of Seismological Observatory Practice (NMSOP-2)
summarizing recommended current best practices for posthole emplacement.

Project website: https://www.iris.edu/hg/initiatives/posthole _emplacement



https://bib.telegrafenberg.de/en/publishing/publishing-services/nmsop
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.iris.edu%2Fhq%2Finitiatives%2Fposthole_emplacement&data=04%7C01%7Cewolin%40usgs.gov%7C60c7624614594808ec1b08d8c313b1d6%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637473836663516167%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=QcUYJT%2BgT%2FkL2gALaTBb9iLWkEXmLTkdNWKCfqJnTww%3D&reserved=0

Kicking off: basics for non-specialists

Case studies and discussions will delve deep into technical details and
the history of posthole sensor development.

First, a bit of background for folks who may be less familiar with
seismic instrumentation, data quality control, or field operations, but
who are still interested in learning about posthole emplacements.

- What is a posthole, anyway?

- Noise 101 for non-specialists
- One network manager's motivation for learning more
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What is a “posthole”?
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Outline

- Noise 101 for non-specialists



PSDs, PDFs, and noise models
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Figure 13.--An overlay of network spectra with straight-line segments fitted to the
high-noise and low-noise envelopes of the overlay.

Peterson (1993): https://pubs.er.usgs.gov/publication/ofr93322



PSDs, PDFs, and noise models
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PSDs, PDFs, and noise models
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Seismometers record signals from many sources

15 km area of flexibility around an initial point

Telemetry [cell or AC VSAT] is feasible, including sufficient
power requirements

Landowner is agreeable

Site s sufficiently removed from sources of vibration

« Roads: *300 m from minor roads and >1.5 km from
major roads

« Rallroads: >3 kmor *10 km in a basin

« Pipelines: *>2 km

+ 0il and gas production: >3 km from wells and injection
facilities

«Irrigation: *2 km from large agricultural and water storage
pumps

« Rivers: >3 km from dams and weirs, >1 km for whitewater,
n/afor slow moving water

* Wind: ridgetops w/hard rock may be considered, but
constant high winds should be avoided

« Construction and mining: >2 km from large projects

« Sedimentary basins: avoid when possible in favor of
competent rock to mitigate multipathing effects

Table 2-1. General criteria used for selecting TA sites

Lower 48 Transportable Array (Busby et al., 2018)

Superior Province Rifting Earthscope Experiment (SPREE)
Siting Criteria

Feature Preferred Distance =~ Minimum Distance
Railroads 10 km 5 km
Highways (interstate) 5 km 3 km
Highways (county) 1.5 km 1 km
Local roads I km 500 m
Driveways 400 m 200 m
Occupied buildings 400 m 200 m
Tall objects (trees, towers) 2 x height I x height
Oil wells and pipelines 2 km 1 km
Dams 3 km 1 km
Construction 3 km 1 km

SPREE Flexible Array deployment (Wolin et al., 2015)
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Seismometers record signals from many sources

Ocean storms generate ambient “microseismic” signals
observed everywhere on Earth - even in continental interiors
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Figure 1.7 Cartoon illustration of microseism generation mechanisms. (a) Secondary
microseisms are generated only when ocean wave trains of the same frequency trav-
eling in opposite directions meet. Under these conditions, a depth-independent
second-order pressure variation arises, with amplitude proportional to the product of
wave amplitudes (a, and a,) and its frequency (2w) double that of the ocean waves
(Longuet-Higgins, 1950). Opposing wave trains can be generated at or near storms in
deep or shallow water, or in shallow water when an incoming wave train meets waves
reflected from a coast. In the former case, energy is transported from the storm to
a receiving station via microseisms; in the latter, it is primarily ocean waves that
transport the energy. Both generation modes may be active for any particular storm.
(b) Primary microseisms are generated through nonlinear coupling of ocean wave
energy into the seafloor by the shoaling action of waves in shallow water (Hasselmann,
1963). Primary microseism frequency w is that of the ocean waves responsible for their
generation, which may travel great distances before primary microseisms are
generated.

(Ebeling, 2012)
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Long-period signals from surface tilt

’ Tue Mar 26 12:17:21 2019 aholcomb (Andrew Holcomb) - Ticket created
Subject: N4_S57A - Noisy channels related to Cattle Grazing
Date: Tue, 26 Mar 2019 12:17:20 -0600

To:
From: [

There is a cattle pasture adjacent to the field where the sensor is buried causing pulsing on all channels.

Subject: Screen Shot 2019-03-26 at 12.02.39 PM.png
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Outline

- One network manager's motivation for learning more



Why am *I* interested in postholes?

The USGS Albuquerque Seismological Laboratory operates 300+ seismic stations with a variety of
instrumentation, emplacements, environments, and monitoring goals

My job as network manager is to ensure data quality, reliability, and efficiency of operations




Posthole motivation #1: Improve reliability

. Agin}g, leaky vaults are a
significant cause of
equipment failure

e Posthole sensors are
designed to operate in the
challenging environmental
conditions present at many of
our sites

e Posthole emplacements
make it harder for curious
humans or animals to tamper
with an expensive broadband
sensor

Broadband sensors do not like to go swimming



Posthole motivation #2:
Improving quality of long-period (T = 10 s) horizontal-
component data in CEUS

Potential to advance L PR

understanding of:
* source processes / g L=t e e A
« stress orientations | A g T
* crust and upper mantle structure a7 -l T L e e [

e seismic hazard / £ S

« and much more

ssa



Comparing the median PSDs of the Alaska TA stations (posthole) to the
median of the L48 TA (vaults) shows significant improvement at short
periods but also long period horizontal noise
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Busby and Aderhold, SRL, 2020



ASL adopted the N4 network in 2019

e Stations were installed in 2008-2013 as part of the
EarthScope Transportable Array

 ~1in 4 (N4!) stations retained to densify monitoring
in central and eastern US

* Advances in sensor design and emplacement
techniques over past 10 years = opportunity to
improve long-period horizontal noise (verticals are
already quite good!) and improve reliability
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One important use of N4 data:
Regional moment tensor calculations

e Regional moment tensors (RMTs)
challenging to calculate for M<3.5 in
CEUS (USGS NEIC/Bob Herrmann)

* Value of lower-magnitude RMTs:

* |Info about fault orientation and crustal
stresses

* Consistent magnitudes in source
catalogs for National Seismic Hazard
Map

* small-magnitude events affect b value;

reduce need to convert from other
magnitude scales to Mw

RMTs from Bob Herrmann



http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/MECHFIG/Plotna.html

Can we get quieter N4 horizontals at T>10 s?
How quiet do they need to be for RMTs?

Can we get RMTs down to M2.5, r £450 km?

Goal: get a rough rule of thumb for noise levels that make
a station useful for low-magnitude RMTs

Incorporate this info into future decisions about posthole
upgrades and QC procedures
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How quiet do they need to be?

Do
e Data: list of stations used in all RMT %
solutions 2018-2020 (thank you, Bob Herrmann!) £
* Establish empirical relationship between e -
noise level and usefulness in RMTs A
* Focus on smallest magnitudes to establish
detection limit
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Power (dB[m?/s*/Hz])

How quiet do they need to be?

Horizontal component 50" percentiles at 30 s for +3 day window around all M<3.5
events from IRIS MUSTANG

Frequency (Hz) freq=0.032 Hz, T=30.84 s
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What | hope to take away from this series:

* How will postholes help me improve reliability and efficiency of operations?

What kinds of improvement in data quality can | expect after converting a station
from a vault to a posthole?

What best practices can my team implement to produce high-quality data?
How will all of these considerations vary from site to site in the real world?
Where can we contribute to exploration and development?
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Timeline and deliverables

January 2021: Kickoff webinar and panel discussion

February - May 2021: Organize discussions of focused topics within posthole
emplacement, held every 3-4 weeks

* We warmly welcome topic suggestions and presenter self-nominations!
June 2021: Solicit information on posthole emplacement sites and documentation.

December 2021: Submit manusc_riﬁt with a compilation of recommended best practices
for posthole emplacement. Publish archive of posthole sites and documentation.

Deliverables:

1. Adigital database of posthole emplacement sites with documentation suitable for
reproducing results (location, data availability/epochs, materials, measurements,

narrative construction/install descriptions or videos, site photos, diagrams - map/cross
section, known noise sources).

2. A manuscript or chapter in New Manual of Seismological Observatory Practice
(NMSOP-2) summarizing recommended current best practices
for posthole emplacement.



https://bib.telegrafenberg.de/en/publishing/publishing-services/nmsop

