An Introduction to Version Control
with Git

Activity for the 2015 EarthScope Data Processing Workshop
Charles J. Ammon, Penn State

Follow along with this activity on your own.

Introduction

Goal: Demonstrate the utility of git sufficiently for you to recognize the importance of
learning more about it.

As a scientist is essential that you work to produce reproducible results. An important
part of that process is keeping reords of your work. A scientific notebook is probably
the most important part of that effort. For computational work, having a record of code
changes is just as important. The importance of tracking changes to computer software
has led to the development of source-version-control packages that allow you to
document and record changes made to software - or at this point, any text files that
you might be modifying.

Whether you are writing C, python, fortran, or matlab scripts, these computer tools
provide you with an opportunity to keep a history of your code modifications. They also
allow you to "roll back" any changes that may not have been a good idea.

Work through the following exercise to become familiar with the basics of git (and to
gain some more experience with the Atom editor).

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Activity Setup

Open a terminal and "ed" to the folder containing the files for this exercise
(.../Editors_and_Codes/qgitActivity). The folder contains a readme.md file in markdown
format and three C source files and a makefile that are used to build a simple

command-line utility that displays a line-printer version of an earthquake focal
mechanism.

gitActivity > 1s L
Makefile pradiation_1lpr.c sdr_to_mij.c
lprmech.c readme.md

gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Build the Exceuteable

You can build the executable file using the make command. Make is a powerful tool
for building codes containing multiple files (but not too many, ie. hundreds or
thousands). We don't have time to get into it, but it is worth learning.

gitActivity = 1s L
Makefile pradiation_1lpr.c sdr_to_mij.c

lprmech.c readme.md

gitActivity > make

clang -c -c =0 lprmech.o lprmech.c

clang -c -c -0 pradiation_lpr.o pradiation_lpr.c

clang -c -c -0 sdr_to_mij.o sdr_to_mij.c

clang —g -0 Llprmech lprmech.o pradiation_lpr.o sdr_to_mij.o -1m
gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

You can list the files again to see what make did. The executeable is called Iprmech,
the files that end in ".0" are compiled (binary object files) versions of the C code
created with the clang compiler. The last line in the make output is the linking step that
linked the object files together to create the executable.

gitActivity = 1s =
Makefile pradiation_1lpr.c sdr_to_mij.c

lprmech.c readme.md

gitActivity = make

clang -c —-c -0 lprmech.o lprmech.c

clang -c -c -0 pradiation_lpr.o pradiation_lpr.c

clang -c —-c¢ -0 sdr_to_mij.o sdr_to_mij.c

clang —-g -o lprmech lprmech.o pradiation_lpr.o sdr_to_mij.o -1m
gitActivity = 1s

Makefile lprmech.o readme.md
Llprmech pradiation_1lpr.c sdr_to_mij.c
lprmech.c pradiation_lpr.o sdr_to_mij.o

gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Test the Executable

To run the program, enter ./Iprmech, you'll see a short usage statement showing you
that the command accepts three command-line arguments, strike, dip, and rake.

gitActivity > 1s L
Makefile pradiation_lpr.c sdr_to_mij.c

lprmech.c readme.md

gitActivity > make

clang -c -c —0 lprmech.o lprmech.c

clang -c -c -0 pradiation_lpr.o pradiation_lpr.c

clang -c -c =0 sdr_to_mij.o sdr_to_mij.c

clang —g -0 Llprmech lprmech.o pradiation_lpr.o sdr_to_mij.o -1m
gitActivity = s

Makefile lprmech.o readme.md
lprmech pradiation_1lpr.c sdr_to_mij.c
lprmech.c pradiation_lpr.o sdr_to_mij.o

gitActivity = ./Llprmech
usage: lprmech strike dip rake

gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

If you provide values for the strike, dip, and rake, you can see what this simple utility
does. Here's a sample output.

gitActivity > lprmech @ 90 @ L
Strike: @ Dip 90.0 Rake: 9.9

Aki & Richards Convention
Moment Tensor:
N E D
.00 1.0 0.00
1.00 @.0@¢ 0.00
.00 ©.00 -0.00

————gitat
——————— #iHEE
————————— i
—————————— S
—————————— R
——————————— HESR SRR
HHRAA RS- ——————————
#UR RS SRR
#H#SH AR -
HAARSHARY — e
H#HR AR -
#HfH————

Harvard]Convention We should change

Moment Tensor: "Harvard" to GCMT.
R T F
-0.00 ©0.00 -0.00
8.80 ©9.00 -l1.00
-0.00 -1.00¢ 0.00

gitActivity >

The code is quite useful for a quick display of focal mechanisms (that you can easily
paste into email messages or notes). There are some things that we should change,
however. One of the changes that we want to make is highlighted above. The new

AN INTRODUCTION TO VERSION CONTROL WITH GIT n

An Introduction to Version Control
with Git

name of the the centroid-moment-tensor project is the Global Centroid Moment-Tensor
project, no longer the Harvard Centroid Moment-Tensor project. Before we tinker with a
working code, however, we should use git to save the working version and track the
changes that we make in a way that we can undo our changes, in case we make an
error.

Using Git

What we want to do next is create a local git repository to track changes that we are
going to make in the code. git should be installed on the computers that you are using.
If it's not on your computer, you can install it relatively simply. Follow the instructions at
http://qit-scm.com.

To see if git is live on the machine you are using, enter which git at the unix prompt.

gitActivity = which git
Jusr/bin/git
gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

http://git-scm.com

An Introduction to Version Control
with Git

git Help

You can get help on git from the unix man page, enter man git at the unix prompt or
entering git --help at the prompt. There are also many web tutorials and at least one
free git book available online.

gitActivity = git —-help L
usage: git [--version] [--helpl [-C <path>] [-c name=valuel
[-—exec-path[=<path>]] [--html-path] [--man-path] [--info-pathl
[-p|--paginate|--no-pager] [--no-replace-objects] [--barel
[-—git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
<command> [<args>]

The most commonly used git commands are:

add Add file contents to the index

bisect Find by binary search the change that introduced a bug
branch List, create, or delete branches

checkout Checkout a branch or paths to the working tree

clone Clone a repository into a new directory

commit Record changes to the repository

diff Show changes between commits, commit and working tree, etc
fetch Download objects and refs from another repository

grep Print lines matching a pattern

init Create an empty Git repository or reinitialize an existing one
log Show commit logs

merge Join two or more development histories together

mv Move or rename a file, a directory, or a symlink

pull Fetch from and integrate with another repository or a local branch
push Update remote refs along with associated objects

rebase Forward-port local commits to the updated upstream head
reset Reset current HEAD to the specified state

rm Remove files from the working tree and from the index

show Show various types of objects

status Show the working tree status

tag Create, list, delete or verify a tag object signed with GPG

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>=' or 'git help =concept>'

to read about a specific subcommand or concept.

gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

We are not going to use most of those commands in this brief activity. We will focus on
some basic frequently used commands.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Git Configuration

We'll want git to know whow made changes and how to contact that person, so before
we get too deep into the example, we'll configure that information into git. You'll want
to substitute your information in place of mine. We use the git config command to set
three items

« Our name
+ Our email
* Our preferred editor

In the terminal, enter the commands as shown below.

gitActivity = git config -—-global user.name "Charles J. Ammon" L
gitActivity > git config --global user.email “charlesammon@psu.edu"

gitActivity = git config -—global core.editor "atom"

gitActivity > git config --list

filter.media.clean=git-media-clean %f

filter.media.smudge=git-media-smudge %f

user.name=Charles J. Ammon

user.email=charlesammon@psu.edu

core.excludesfile=/Users/cammon/.gitignore_global

core.editor=atom

difftool.sourcetree.cmd=opendiff "$LOCAL"™ "$REMOTE"

difftool.sourcetree.path=
mergetool.sourcetree.cmd=/Applications/SourceTree.app/Contents/Resources/opendiff-w.
sh "$LOCAL" "$REMOTE" -ancestor "$BASE" -merge "$MERGED" k
mergetool.sourcetree. trustexitcode=true

core,.repositoryformatversion=0

core. filemode=true

core.bare=false

core. logallrefupdates=true

core.precomposeunicode=true

gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Creating the Git Repository

To create an empy git repository we simply use the git init command in the directory
containing the files fpr which we plan to track changes. In our cse, that's the folder that
we've been working in (with the C files, makefile, and readme.md). Enter the git init
command in the terminal and hit return.

Here is the result that you should see. | started with an Is -asF command so that we
could see hidden files and folders in the file list. The | entered git init, and again listed
the files. git created a subdirectory called .git inside the directory.

gitActivity = 1ls -asF L
total 184

e ./ 8 lprmech.c 8 readme.md

e ../ 8 lprmech.o 8 sdr_to_mij.c

8 Makefile 16 pradiation_Llpr.c 8 sdr_to_mij.o

32 lprmech=* 8 pradiation_lpr.o

gitActivity = git init
Initialized empty Git repository in /Volumes/hdl/Users/cammon/Dropbox/EarthScopeShor
tCourse/2015/Editors_and_Codes/gitActivity/.git/
gitActivity > 1ls -asF

total 184

8 ./ 32 lprmechs*

a 8 lprmech.c

ﬁ 8 lprmech.o

8 M= ile

16 pradiation_Llpr.c

pradiation_lpr.o
readme.md
sdr_to_mij.c
sdr_to_mij.o

oo

gitActivity >

All the information needed by git will be placed inside the .git subdirectory. You can
move the entire directory containing the source files and .git without affecting git's
ability to track changes.

Right now, the .git folder is empty, nothing is stored within it, our first step using git is
to add the files that we want to track to the repository. Adding changes to the

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

repository is a two-step process. First we stage the changed files (and right now all
files are changes since the repository is empty), then we commit the changes.

We'll start with an oft-used git command, git status. That will show us what files git
recognizes in our project.

gitActivity > git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

Makefile

Lprmech
lprmech.c
lprmech.o
pradiation_lpr.c
pradiation_lpr.o
readme.md
sdr_to_mij.c
sdr_to_mij.o

nothing added to commit but untracked files present (use "git add" to track)
gitActivity =

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control

with Git

Staging Files for a Commit

git tells use that there's nothing to commit at this point, but the directory contains
untracked files. We want git to track the C codes, the Makefile, and the readme.md file.
There's no point in tracking the *.o files since they are created from the C codes and

the make file.

We stage or ready the files of interest for commit using the git add command.

gitActivity > git
gitActivity = git
gitActivity = git

gitActivity > git
On branch master

Initial commit

add *.c B
add Makefile

add readme.md

status

Changes to be committed:

(use "git rm —--cached <file>..." to unstage)
new file: Makefile
new file: lprmech.c
new file: pradiation_1lpr.c
new file: readme.md
new file: sdr_to_mij.c

Untracked files:

(use "git add <file=..." to include in what will be committed)

lprmech

lprmech.o

pradiation_lpr.o
sdr_to_mij.o

gitActivity > []

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Again, git provides some hints for what we might want to do next in the status
command. If we wanted to unstage a file we can use git rm --cached <file> or we can
add some of the untracked files.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Commiting Changes to the Repository

We are now ready to create the initial commit of the source codes to the repository. An
important part of committing changes is describing those changes. This can be done
on the command line using

git commit -m "description ..."

gitActivity =/ git status L
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: Makefile

new file: lprmech.c

new file: pradiation_Llpr.c
new file: readme.md

new file: sdr_to_mij.c

Untracked files:
(use "git add <file=..." to include in what will be committed)

lprmech
lprmech.o
pradiation_1lpr.o
sdr_to_mij.o

gitActivity = git commit -m "Initial commit, functioning code."
[master (root-commit) 9c26ce4] Initial commit, functioning code.
5 files changed, 403 insertions(+)
create mode 108644 Makefile
create mode 100644 lprmech.c
create mode 100644 pradiation_lpr.c
create mode 100644 readme.md
create mode 100644 sdr_to_mij.c
gitActivity > [|

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

We can check the status of our repository using the git status command, and then
check the history of the respository using the git log command.

lprmech |
lprmech.o

pradiation_lpr.o

sdr_to_mij.o

gitActivity > git commit -m "Initial commit, functioning code."
[master (root-commit) 9c26ced4] Initial commit, functioning code.
5 files changed, 4@3 insertions(+)
create mode 100644 Makefile
create mode 180644 lprmech.c
create mode 100644 pradiation_lpr.c
create mode 100644 readme.md
create mode 100644 sdr_to_mij.c
gitActivity > git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)

lprmech
lprmech.o
pradiation_Llpr.o
sdr_to_mij.o

nothing added to commit but untracked files present (use "git add" to track)
gitActivity > git log

Author: Charles J. Ammon <charlesammon@psu.edu>
Date: Sat Aug 1 16:83:40 2@15 -0400

Initial commit, functioning code.
gitActivity >

The git log command shows us the "hash" (the long string of hexidecimal numbers),
the author, the date, and the message describing this commit. If at some point we want
to revert back to this state of code, we would use the hash to identify this particular
snapshot of the codes.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Changing the Codes

Now that we have the original codes safely recorded in the git repository, we can begin
to modify the them without fear of losing the original working version (and without

producing a suite of directories called "original”, "new", "newer", etc.

Start up Atom and open the directory containing the Iprmech source codes.

+ M gitActivity
* M ait

@ lprmech
@ lprmech.c
lprmech.o
E Makefile
@ pradiation_lpr.c
pradiation_|pr.o
readme.md
@ sdr_to_mij.c
sdr_to_mij.o

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control

with Git

Single-click the Iprmech.c file so that we can change the output statement to include
"GCMT Convention" in place or "Harvard Convention". The change should be made on
line 41. Select the word Harvard and replace it with GCMT.

C

v Il gitActivity
> M agit

@ Iprmech

lprmech.o

E Makefile

B pradiation_lpr.c
pradiation_|lpr.o
readme.md

@ sdr_to_mij.c
sdr_to_mij.o

lprmech.c x
13 Livaw =) ';';:_{ "G" hide|
20 {
21 fprintf(stdout,"usage: lprmech strike dip rake\n\n"};
22 exit(1);
23 S
24 // parse the command line arguments
25 sscanflav[1],"%f", &x@);
26 sscanf(av[2],"%f",&x1);
27 sscanf(av[3],"%f",&x2);
28 // echo the command line arguments to the user
29 fprintf(stdout,"\nStrike: %1.f Dip %.1f Rake: %.1f\n",x@,x1,x2);
38 // convert the strike, dip, and rake to a moment tensor
31 sdr_to_mij(x@,x1,x2,m);
32 // list the moment tensor
33 fprintf(stdout,"\nAki & Richards Convention\n Moment Tensor:\n"};
34 fprintf(stdout," N E D\n");
35 PrintMTensor({stdout, m);
36 // print the polarity of P radiation {a seismic focal mechanism)
37 PrintPradiation(stdout, m);
38 // convert the moment tensor from aki and richards convention to gemt forr
39 ar_to_hrv_mij(m);
48 // print out the
41 fprintf({stdout," fonvention\n Moment Tensor:\n");
42 fprintf(stdout," FAn");
43 PrintMTensor(stdouty—mis
44 /Y
45 return(@);
a6 1}
47 S/
48
Iprmech.c 41:27 (7) UTF-8 C o

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Save the change to Iprmech.c and go back to the terminal and execute a git status
command.

You will see that git has recognized a change to the tracked file Jpormech.c, as shown

below.
gitActivity > 1s L
Makefile lprmech.o readme.md
lprmech pradiation_lpr.c sdr_to_mij.c
lprmech.c pradiation_lpr.o sdr_to_mij.o

gitActivity > git status
On branch master
Changes not staged for commit:

(use "git add <file=..." to update what will be committed)
(use "git checkout -- <file=..." to discard changes in working directory)
modified: lprmech.c

Untracked files:
(use "git add <file=..." to include in what will be committed)

lprmech
lprmech.o
pradiation_lpr.o
sdr_to_mij.o

no changes added to commit (use "git add" and/or '"git commit -a")
gitActivity >

Recognize the change is all git has done so far. If we want to commit this change, we
need to stage the modified file with git add, and then commit the changes with git
commit. We are not done yet.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control

with Git

Two other references to the Harvard CMT remain in the code. Look at lines 7 and 8,
which contain function names that include the abbreviation hrv. We might as well

change those as well.

C

] space b

v Il gitActivity
> M agit

@ Iprmech

lprmech.o

E Makefile

@ pradiation_lpr.c
pradiation_|lpr.o
readme.md

@ sdr_to_mij.c
sdr_to_mij.o

I S I S A S S e

L
ol -~ (=

L MO

= WD

U B W R

e =

oo

Lt

lprmech.c x

FLOCLUOE <5L010.0M>
#include <stdlib.h=
#include <math.h=

//protoypes

void sdr_to_mij(float s,float d,float r,float m[3]1[3]1};
void ar_to_hrv_mij (float m[31[3]);

void hrv_to_ar_mij(float m[3][3]);

void PrintPradiation(FILE *outStream, float Mij[31[31);
void PrintMTensor(FILE *outStream, float Mij[3]1[31);

int mainfac,av)
int ac;
char *av(];

{

float x@,x1,x2,m[3][3]1;

!/

// check the number of command line arguments
if(ac != 4)

{

fprintf(stdout,"usage: lprmech strike dip rake\n\n"};
exit(1);
}
// parse the command line arguments
sscanflav[1],"%f" &x@);
sscanf(av[2],"%f" &x1);
sscanflav[3],"%f" &x2);
// echo the command line arguments to the user
fprintf(stdout,"\nStrike: %1.f Dip %.1f Rake: %.1f\n",x@,x1,x2);
// convert the strike, dip, and rake to a moment tensor

lprmech.c 41:24

11 *R" shol

T3 "C" hide

UTF-8 C 9

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

However, these function names appear in several files in our project. We'll have to

change them in multiple files. To find all the instances of ar_to_hrv_mij in our project,

select Find in Project from the Find Menu.

€ Atom File Edit Selection GIE]| View Packages Window Help

! @ @ ¢ lprmech.c - MNolumes/hd] Find in Buffer #F topeShortCourse/2015/Editers_and_Codes/gitActivity - Atom
| v Bl gitActivity o Replace in Buffer “C38F
N Pl select Next %D |
o : Select Al ~%G
B lprmech - Toggle Find in Buffer
3
4 Find in Project
Iprmech.o 5 Toggle Find in Project
B Makefile 6 Find Next s oat d,float r,float m[3]1[31);
B pradiation_lpr.c 7 Find Previous %G 131131);
pradiation_lpr.o 8 Replace Next 131 [31);
T 9 Replace All *outStream, float Mij[31([31);
B sdrsomile 10 Find Buffer g itStream, float Mij[3]1[3]);
- 11 Find File %P
. o 12 Find Modified File {388

13 IATac;
14 char =av[];

15 1

16 float x@,x1,x2,m[3][3];

17 s

18 // check the number of command line arguments

19 if(ac != 4)

20 {

21 fprintf(stdout,"usage: lprmech strike dip rake\n\n");
22 exit(1);

23 }

24 // parse the command line arguments

25 sscanf(av[1],"%f",&x0);
26 sscanflav[2],"%f",&x1);
27 sscanf(av[3],"sf",&x2);

28 // echo the command line arguments to the user

29 fprintf(stdout,"\nStrike: %1.f Dip %.1f Rake: %.1f\n",x0,x1,x2);

30 // convert the strike, dip, and rake to a moment tensor

21

lprmech.c 7:19 (13) UTF-8 C o

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control

with Git

Here's the results of the search. The function name occurs in three places over two

files.

+ M gitActivity
* M ait

@ Iprmech
@ Iprmech.c
Iprmech.o
B Makefile
B pradiation_lpr.c
pradiation_lpr.o
readme.md
@ sdr_to_mij.c
sdr_to_mij.o

Iprmech.c x Q Project Find Results x

v B lIprmechc (2)

(£loat m[3]1(31);

0 EENESIREIE) (- ;

v B sdr_to_mijc (1)

37 void | (c10at m([3] (3]}

3 results found in 2 files for _ Finding with Options: Case Insensitive
ar_to_hrv_mij % Aa
Replace All

Project Find Results ap

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

To change all occurrences of the function name, use the form at the bottom of the
Project Find Results tab.

| [] @ [Project Find Results - NVolumes/hd1/Users/cammon/Dropbox/EarthScopeShoriCourse/2015/Editors_and_Codes/gitActivity - Atom |

~ B gitActivity Iprmech.c x = Q Project Find Results x
> M agit

3 results found in 2 files for [@r_to hrvomij|
@ Iprmech

b @ lprmech.c
B lprmech.c

[EENESNEEE) ax_to_gomt_mij

Iprmech.o
B Makefile [EENEENESR) a_to_gemt mij oo
B pradiation_lpr.c v B sdr_to_mij.c
pradiation_Ipro vos: D SENESGERERREE) < o+ = (%) %))

readme.md
B sdr_to_mij.c
sdr_to_mij.o

3 results found in 2 files for _ Case Insensitive
ar_to_hrv_mij % Aa
ar_to_gcmt_mij Replac@u
Project Find Results L o

Repeat the procedure to change hrv_to_ar_mij to gemt_to_ar_mij. Dismiss the find
subwindow using the Toggle Find in Project menu item in the Find Menu.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

The git status should now show two modified files.

] [] Terminal — tcsh — B4x31

gitActivity > git status
On branch master
Changes not staged for commit:
(use "git add <file=..." to update what will be committed)

(use "git checkout -- <file=..." to discard changes in working directory)
modified: lprmech.c
modified: sdr_to_mij.c
Untracked files: I
(use "git add <file=..." to include in what will be committed)
lprmech
lprmech.o

pradiation_1lpr.o
sdr_to_mij.o

no changes added to commit (use "git add" and/or "git commit -a")
gitActivity > [

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Before staging and committing the changes, make the executable and test it. You
should see a correct output, including the label "GCMT" in place of Harvard. Once you
are sure that the codes work, stage the files for the commit using git add.

[] [] Terminal — tcsh — 84x31

modified: lprmech.c
modified: sdr_to_mij.c

Untracked files:

(use "git add <file=..." to include in what will be committed)
lprmech 1
Lprmech.o

pradiation_lpr.o
sdr_to_mij.o

no changes added to commit (use "git add" and/or "git commit -a")
gitActivity > git add lprmech.c sdr_to_mij.c

gitActivity = git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
modified: lprmech.c
modified: sdr_to_mij.c

Untracked files:
(use "git add <file=..." to include in what will be committed)

lprmech
lprmech.o
pradiation_lpr.o
sdr_to_mij.o

gitActivity > [

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Then commit the changes using git commit -m "description...".

] [] Terminal — tcsh — B4x31

Untracked files:
(use "git add <file>..." to include in what will be committed)

lprmech
Lprmech.o
pradiation_lpr.o
sdr_to_mij.o

no changes added to commit (use "git add" and/or "git commit -a")

gitActivity > git add Llprmech.c sdr_to_mij.c

gitActivity > git status

On branch master

Changes to be committed: I
(use "git reset HEAD =file>..." to unstage)

modified: lprmech.c
modified: sdr_to_mij.c

Untracked files:
(use "git add <file=..." to include in what will be committed)

lprmech
lprmech.o
pradiation_1lpr.o
sdr_to_mij.o

gitActivity = git commit -m "Refactored function names and output, HRV -> GCMT"
[master a5@al73] Refactored function names and output, HRV -> GCMT
2 files changed, 6 insertions(+), 6 deletions(-)

gitActivity = [

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Now we have two commits (or versions of our codes stored within the git repository).
you can see them with git log.

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: lprmech.c
modified: sdr_to_mij.c

Untracked files:
(use "git add <file=..." to include in what will be committed)

Lprmech
lprmech.o
pradiation_1lpr.o
sdr_to_mij.o

gitActivity = git commit -m "Refactored function names and output, HRV -> GCMT"
[master a5@al73] Refactored function names and output, HRV -> GCMT

2 files changed, 6 insertions(+), 6 deletions(-)
(gitActivity > git log

Author: Charles J. Ammon <charlesammon@psu.edu>
Date: Sat Aug 1 17:49:37 2@15 -@0400

Refactored function names and output, HRV -> GCMT

Author: Charles J. Ammon <charlesammon@psu.edu>
Date: Sat Aug 1 16:83:40 2@15 -0400

§ Initial commit, functioning code.
gitACTiVity = ||

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control

with Git

Multiple Cursors in Atom

Let's make one more change to the codes. If you look closely, the variables that are
used to represent strike, dip, and rake are the uninformative x0, x1, and x2. This is not
a good programming practice.

C

+ [gitActivity
> M agit
B lprmech

Iprmech.o

@ Makefile

@ pradiation_lpr.c
pradiation_|pr.c
readme.md

@ sdr_to_mij.c

sdr_to_mij.o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39

Iprmech.c x

void PrintMTensor(FILE *outStream, float Mij[3][31);

int main{ac,av)
int ac;
char *av(];

{

floatm[B] [31;

/

// check the number of command line arguments

if(ac != 4)

{
fprintf{stdout,"usage: lprmech strike dip rake\n\n");
exit(1);

}

// parse the command line arguments

sscanf(av[1],"%f" |&x@)|;

sscanflav[2],"%f" Jax1)|;

sscanf(av[3],"%f" |&x2)|;

// echo the command tine arguments to the user
fprintf(stdout,"\nStrike: %1.f Dip %.1f Rake: %.1f\n"
// convert the strike, dip, and rake to a moment tensor
sdr_to_mij m) ;

// list the moment tensor

fprintf(stdout,"\nAki & Richards Convention\n Moment Tensor:\n"};
fprintf(stdout,”"” N E D\n");

PrintMTensor(stdout, m);

// print the polarity of P radiation (a seismic focal mechanism)
PrintPradiation(stdout, m);

§% "C" hids

// convert the moment tensor from aki and richards convention to gecmt forr

ar to acmt miiim):

lprmech.c 1:1

UTF-8 C ¥

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

We'll use the mulitple cursor feature in Atom to change these variable names to
something more informative, like theStrike, theDip, theRake.

In the editor, select x0 in line 16. Then enter the key comination ctrl-cmd-g (hold the
control and command keys down and then press g). This will select all instances of x0
in the file.

When all the x0's are selected, enter theStrike, the replace all instances of x0 with
theStrike.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control

with Git

| @® O @ . Iprmech.c - Nolumes/hd1/Users/cammon/Dropbox/EarthScopeShortCourse/2015/Editers_and_Codes/gitActivity

+ [gitActivity
> M agit
B lprmech

Iprmech.o

B Makefile

@ pradiation_lpr.c
pradiation_|pr.c
readme.md

@ sdr_to_mij.c
sdr_to_mij.o

Iprmech.c o
18 wvoid PrintMTensor(FILE *outStream, float Mij[3]1[31);
11
12 int mainlac,av)
13 int ac;
14 char *av(]; I
15 o
16 float theStrike|,x1,x2,m[3](3];
17 /
18 // check the number of command line arguments
19 if(ac != 4)
20 {
21 fprintf{stdout,"usage: lprmech strike dip rake\n\n");
22 exit(1);
23 }
24 // parse the command line arguments
25 sscanf(av[l],“%f“,&theﬁtrikﬁ};
26 sscanf(av[2],"%f",&x1);
27 sscanf(av([3],"%f",&x2) ;
28 // echo the command line arguments to the user
29 fprintf(stdout,"\nStrike: %1.f Dip %.1f Rake: %.1f\n“,the5trikq,xl,x2};
30 // convert the strike, dip, and rake to a moment tensor
31 sdr_to_mij (theStrike|,x1,x2,m};
32 Jf list t theStrike
33 fprintf{stGout, - unventionyn Moment Tensor:\n");
34 fprintf(stdout,”"” N E D\n");
35 PrintMTensor(stdout, m);
36 // print the polarity of P radiation (a seismic focal mechanism)
37 PrintPradiation(stdout, m);
38 // convert the moment tensor from aki and richards convention to gecmt forr
39 ar to acmt mii(m):
Iprmech.c* 31:22 UTF-8 C o

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Repeat the procedure for the x1 and x2 variables and save the results. The stage the
file, and commit the change into the git repository.

gitActivity = git status
On branch master
Changes not staged for commit:
(use "git add <file=..." to update what will be committed)
(use "git checkout -- <file=..." to discard changes in working directory)

modified: lprmech.c

Untracked files:
(use "git add <file=..." to include in what will be committed)

lprmech
lprmech.o
pradiation_lpr.o
sdr_to_mij.o

no changes added to commit (use "git add" and/or "git commit -a")
gitActivity = git add lprmech.c
gitActivity > git commit -m "Refactored x@->theStrike, x1->theDip, x2->theRake"
[master b675c@f] Refactored x@->theStrike, x1->theDip, x2->theRake
1 file changed, 6 insertions(+), 6 deletions(-)
gitActivity > []

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Now we have three commits in the git repository.

gitActivity > git log

Author: Charles J. Ammon =<charlesammon@psu.edu=
Date: Sat Aug 1 18:083:11 2@15 -@400

Refactored x@->theStrike, x1l->theDip, x2->theRake
Author: Charles J. Ammon <charlesammon@psu.edu>
Date: Sat Aug 1 17:49:37 2@15 -2400

Refactored function names and output, HRV -> GCMT

Author: Charles J. Ammon <charlesammon@psu.edu=
Date: Sat Aug 1 16:83:48 2015 -0400 N

Initial commit, functioning code.
gitActivity >

Undoing

Just about anything in the git repository can be undone and you can reocver earlier
versions or the code, but you have to be careful when doing so. You can revert any file
that has not yet been committed using

git checkout <filename>

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

If you've already committed changes that you want to undo, then you use

git reset <last good commit hash>

Be careful with that, it will revert to the referenced commit. Of course if you have to
recover from a reset, you can, but things can get confusing. You can use git reflog and
git reset or git checkout. For a complete description of the process, see

https://qgithub.com/blog/2019-how-to-undo-almost-anything-with-qit.

Right now, our changes are probably worth keeping, so we won't revert anything. But
suppose that we wanted to extend the program, say by adding a function to compute
the stress axes and slip vector for the specified strike, dip, and rake.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

https://github.com/blog/2019-how-to-undo-almost-anything-with-git

An Introduction to Version Control
with Git

Branches

Git provides a superb facility for experimenting with the code. We can create a new
branch of the code, make changes, test them, decide whether to keep them, and then
later merge the experimental branch with the "master" branch that we just created.

We start by "checking out" the existing code into a new branch, which we'll call
slipvector. Specifically, we create the new branch with the git checkout command,
and then list the branches with the git branch command. The asterisk indicates that
we are now working with the slipvector branch.

gitActivity > git status
On branch master
Untracked files:
(use "git add <file=..." to include in what will be committed)

lprmech
lprmech.o
pradiation_lpr.o
sdr_to_mij.o

nothing added to commit but untracked files present (use "git add" to track)
gitActivity > 1s

Makefile lprmech.o readme.md
lprmech pradiation_1lpr.c sdr_to_mij.c
lprmech.c pradiation_lpr.o sdr_to_mij.o

gitActivity > git checkout -b slipvector
Switched to a new branch 'slipvector'
gitActivity = git branch

master
% slipvector
gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

We can create a file called slipvector.c and add it to the slipvector branch of the code
using git add. Use git status to check the state of the repository.

* slipvector L
gitActivity = touch slipvector.c
gitActivity > git status
On branch slipvector
Untracked files:
(use "git add <file=..." to include in what will be committed)

lprmech
lprmech.o
pradiation_1lpr.o
sdr_to_mij.o
slipvector.c

nothing added to commit but untracked files present (use "git add" to track)
gitActivity > git add slipvector.c
gitActivity > git status
On branch slipvector
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

[new file: slipvector.c]

Untracked files:
(use "git add <file=..." to include in what will be committed)

Lprmech
lprmech.o
pradiation_1lpr.o
sdr_to_mij.o

gitActivity > [|

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

We can then commit the change (the addition of the slipvector.c file to the slipvector
branch).

gitActivity = git commit -m "Starting slipvector development."
[slipvector 7b7df24] Starting slipvector development.

1 file changed, @ insertions(+), ©® deletions(-)

create mode 108644 slipvector.c
gitActivity = git log

Author: Charles J. Ammon <charlesammon@psu.edu=>
Date: Sat Aug 1 2@:14:56 2015 -0400

Starting slipvector development.
Author: Charles J. Ammon <charlesammon@psu.edu=
Date: Sat Aug 1 18:083:11 2@15 -@400

Refactored x@->theStrike, xl->theDip, x2->theRake
Author: Charles J. Ammon <charlesammon@psu.edu=
Date: Sat Aug 1 17:49:37 2@15 -0400

Refactored function names and output, HRV -> GCMT
Author: Charles J. Ammon =<charlesammon@psu.edu=
Date: Sat Aug 1 16:03:40 2@15 -0400

Initial commit, functioning code.
gitActivity >

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

We can switch back and forth between the branches using git checkout to checkout a
particular branch. Note that when | return to the master branch, the file slipvector.c is
not in the working directory.

gitActivity = git branch —--1list L
master

* slipvector

gitActivity = 1s

Makefile pradiation_1lpr.c sdr_to_mij.o
lprmech pradiation_lpr.o slipvector.c
lprmech.c readme.md

lprmech.o sdr_to_mij.c

gitActivity > git checkout master
Switched to branch 'master’
gitActivity = s

Makefile lprmech.o readme.md
lprmech pradiation_1lpr.c sdr_to_mij.c
lprmech.c pradiation_lpr.o sdr_to_mij.o

gitActivity >

Once we complete development of the slipvector.c code, test it, and are satisfied that it
works, we can git merge the slipvector branch with the master branch. We can always
checkout the master branch if someone needs the code before we complete the
addition of the slipvector feature (or we mess everything up, we can delete the
experimental slipvector branch and start over).

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

Exploring git and http://github.com

We have barely scratched the surface of git's capabilities and applications. You can
use it with latex documents (it's not the most efficent situation, but it will work), or any
other text files that you maintain.

You should have no problem finding tutorials and information on git. Explore them
because git will help you stay organized, track your software development and help you
create more reproducible results.

We have discussed local repositories that are located on the computer that we are
using. The broad computing community has largely adopted cloud-based repositories
that form a valuable resource, and help make sure the codes are backed up, and easy
to install on new systems. Browse or search http://github.com for an incredible number
of projects. If you haven't visited that site, you may be surprised to see how much code
is being shared with git respositories.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

The GitHub App

Using the command line is a good way to start using git, and may be the only way to
use it when you are remotely logged into a machine. However, there are GUI tools that
can allow to use git more conveniently.

Connect to http://mac.gihub.com and download GitHub for the mac. Then launch the
application.

‘s0e0 GitHub
e 002 e
k

AN INTRODUCTION TO VERSION CONTROL WITH GIT

http://mac.gihub.com

An Introduction to Version Control
with Git

Open the Iprmech git repository that you just created.

Select Add Local Repository from the File Menu. The navigate to the folder containing
your recently created Iprmech repository. | was working in the folder gitActivity, so |
selected that folder.

& GitHub Edit View Repository Branch Window Help
New Repaository... GitHub

New Window

Clone Repository...
Add Local Repository...

Open Recent
Reload Repositories

Close

Add a Repository

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

@ GitHub
|
Al 22 [Bm o1 v P Editors_and_Codes z Q
Favorites MName Date Modified ~ Size Kinc
E Recents » [N docs Yesterday, 10:16 PM == Folc
|| gitActivity.soln Aug 1, 2015, 8:19 PM - Fold
té Dropbox
> BB gitActivity |, Aug 1, 2015, 3:08 PM
cammaon » [EditorActivity - Aug 1, 2015, 11:35 AM -- Folg

& Al My Files
¢’ iCloud Drive
v2: Applications
Desktop
Documents
FI_I Downloads
FI_I Movies

FI_I Music

rfl Pictures

Cancel Add

AN INTRODUCTION TO VERSION CONTROL WITH GIT

An Introduction to Version Control
with Git

You'll see a list of repositories on the left, the list of commits in the selected repository
in the middle, and then a comparison of the changes included in the selected commit
on the right. You can browse the history of the file quite conveniently with this tool.

Select some of the commits to review your actviity.

[NN
+ v I || master~ S Publish
3 commits Refactored x0->theStrike, x1->theDip, x2->theRake
o Refactored x0->theStrike, x1->theDip, X... Charles J. Ammon -0~ b§75¢01 (31 day ago
e 1 day ago by Charles J. Ammon

lprmech.c

2(gainyon

Refactored function names and ou...

int ac;
char *av[];

{

Initial commit, functioning code.

float x@,x1,x2,m[3][3];
+ float theStrike,theDip,theRake,m[3][3];
I
/! check the number of command line arguments

if(ac != 4)

exit(l);

}
J// parse the command line arguments
sscanf(av[1],"%f",&x8);
sscanf(av[2],"%F",&x1);
sscanf(av([3],"%F",&x2);

+ sscanf(av[1],"%f",&thestrike);

& sscanf(av[2],"%f",&theDip);

& sscanf(av[3],"%f",&theRake);

/{ echo the command line arguments to the user

P P L "I

The GitHub app also lets you publish your repository to http://github.com, which allows
you to share your work with others and back up your work to the cloud. github
memberships are free, and although most repositories are public, they allow a few
private repositories for educational work, and more if you are willing to pay a small
annual fee.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

http://github.com,

An Introduction to Version Control
with Git

Penn State runs their own online git service based on the http://qgit.psu.edu software
that members of Penn State community can use to create and store repositories. | am
sure that your institution likely has a similar resource.

We don't have time to explore the many features and uses of github, but | recommend
you make some time when you can. To get started, go to github.com and search for
user:USGS, you'll see many software items being distributed by one part of our
community. For general exploration, click the explore link on the github home page.

AN INTRODUCTION TO VERSION CONTROL WITH GIT

http://gitlab

	Introduction
	Activity Setup
	Build the Exceuteable
	Test the Executable

	Using Git
	git Help
	Git Configuration
	Creating the Git Repository
	Staging Files for a Commit
	Commiting Changes to the Repository
	Changing the Codes
	Multiple Cursors in Atom
	Undoing
	Branches

	Exploring git and http://github.com
	The GitHub App
	Open the lprmech git repository that you just created.

