
Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 1	

An Introduction to 1	

Modern Software Development Tools 2	

Appleʼs XCode Version 3.2.6 3	

Charles J. Ammon / Penn State 4	

August, 2011 5	

Most seismology that I am familiar with is performed on UNIX compatible 6	

computers (with the exception of some high-performance systems used for the 7	

solution of differential equations). So in this brief introduction to modern 8	

development environments I will focus on Appleʼs OS X tool, Xcode. I know from 9	

talking with students that the modern tools that are provided by companies such 10	

as Apple are confusing for beginners. These tools offer a tremendous number of 11	

features, the trick is to become comfortable with the simplest features first, then 12	

move onto more complex. In one hour we are not going to exercise much of 13	

Xcode, but we will construct a simple program that can be run from the command 14	

line (like much seismic software). 15	

Getting Some Data To Work With 16	

One of the most common things that I do as an earthquake seismologist is 17	

search for hypocenters using the US Geological Surveyʼs Earthquake-Search 18	

Web Tool. Sometimes Iʼm interested in the hypocenters themselves, other times I 19	

want to use them as sources for data requests related to earth-structure 20	

investigations. The point is I often start an investigation with the USGS 21	

hypocenters. 22	

The Figure below shows an image of the site that I mean, and the web address is 23	

highlighted with a red box. The address is (perhaps you can copy and paste it 24	

from this PDF) 25	

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/ 26	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 2	

	
 27	

Point a web browser at this site. We are going to perform a global search for all 28	

events with a magnitude greater than 7.0 since 1973. Fill in the fields on the web 29	

browser to complete the search. You need to specify the start and end dates, and 30	

the minimum (7.0) and maximum magnitudes (use 9.8). Then click “Submit 31	

Search”. 32	

The search-output file format is relatively simple. The list contains a set of 33	

standard fields that we are going to read into a simple C program, and print them 34	

to the screen. This is an oversimplified problem, but our focus here is on the 35	

Xcode development environment, not the program. The fields that we will parse 36	

are those within the red box in the figure below. 37	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 3	

	
 38	

Copy the text output into a text editor and save the results in a file called 39	

myHypocenters.txt. For now save the file on your computerʼs Desktop. Weʼll 40	

move it later. Start with the hypocenter lines – ignore the lines that summarize 41	

the search and the column headings. The start of your file should look like: 42	

PDE 1973 01 30 210112.50 18.48 -103.00 43 7.5 MsGS .C. .T..... 43	

PDE 1973 02 06 103710.10 31.40 100.58 33 7.7 UKPAS .C. 44	

PDE 1973 02 28 063749.50 50.49 156.58 27 7.2 MsGS 2F. .T..... 45	

PDE 1973 03 17 083051.80 13.37 122.79 33 7.5 UKUPP 6C. F...... 46	

One of the nice features of C is the fact that it has constructs called structures (so 47	

does MATLAB), which are a step towards objects in object-oriented languages 48	

such as C++, Objective-C, Python, and Java. Here is the structure that we are 49	

going to use: 50	

struct seismicOrigin 51	

{ 52	

 char catalogName[8]; 53	

 int year; 54	

 int month; 55	

 int day; 56	

 int hour; 57	

 int minute; 58	

 float seconds; 59	

 float latitude; 60	

 float longitude; 61	

 float depth; 62	

 float magnitude; 63	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 4	

 char magType[8]; 64	

}; 65	

The structure is called a seismicOrigin, and we will read each line of our output 66	

file into a new seismicOrigin. Weʼll store the information for all the earthquakes in 67	

an array of seismicOrigins. This is convenient, but again, our focus is not on how 68	

to do things in C. 69	

Launching Xcode 70	

To get started, launch Xcode, which is located in the Developer Folder on the 71	

computerʼs top-level directory or the System Disk. This is the place where the 72	

Applications Folder and the System folder normally reside. The Xcode application 73	

is located in /Developer/Applications. On my computer, the top level disk is called 74	

hd0 and the location of XCode looks like: 75	

	
 76	

Double-click the Xcode icon to launch the application. You should see a window 77	

that looks like the one below. Or you can use Spotlight to launch Xcode, if you 78	

are familiar with that approach. 79	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 5	

	
 80	

The first thing that we have to do is create an Xcode project. 81	

Xcode Projects 82	

Xcode manages codes as parts of “Projects”. For now, just consider the case 83	

where we have one program in a project (you can package libraries and 84	

programs together). The Project is where you store all the files related to the 85	

program – the C-language source code, the C-language include files, the 86	

compilation parameters, the compiled codes; everything related to this program. 87	

We are going to create the simplest of programs, a command-line tool (a 88	

program that you execute using the command line. 89	

Choose to create a new project from the splash screen, or create a new project 90	

by selecting New Project from Xcodeʼs File menu. Select Mac OS X Application 91	

from the column on the left and then select Command Line Tool from the palette 92	

of application types that appears. Create a new folder to contain the project – Iʼll 93	

assume that you place is on the Desktop. Although you can name the project 94	

whatever you want, for the sake of this exercise, call the project neicOriginParser. 95	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 6	

	
 96	

The project template is simple, and includes one source code file, main.c, and a 97	

template for a UNIX style “man” page ReFormatNEICOrigins.1, which is located 98	

in the Documentaion Folder. We wonʼt worry about the man page, but this is a 99	

handy feature. Open the Source folder in the column on the left by clicking the 100	

small triangle to the left of the Source folder icon. Examine main.c by selecting it 101	

(one click) in the file list on the left. The file will open in the Xcode source-code 102	

editor pane. 103	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 7	

	
 104	

You can run the template code by clicking the Build and Run button in the Xcode 105	

window. When you do so, Xcode will compile the source code, main.c, using gcc, 106	

and then run the code. The results are shown in the subwindow of Xcode – the 107	

template code simply prints the string “Hello World!” to the terminal. If you donʼt 108	

see the output, choose Console from Xcodeʼs Run Menu. Note that you can 109	

resize the various window panes in the Xcode window. At some point you will 110	

want to increase the size of the editor pane (where the source code is listed), so 111	

that you can work with the code that we plan to create into the editor. We are 112	

simply going to replace all the text in main.c with 113	

#include <stdlib.h> 114	

#include <stdio.h> 115	

 116	

struct seismicOrigin 117	

{ 118	

 char catalogName[8]; 119	

 int year; 120	

 int month; 121	

 int day; 122	

 int hour; 123	

 int minute; 124	

 float seconds; 125	

 float latitude; 126	

 float longitude; 127	

 float depth; 128	

 float magnitude; 129	

 char magType[8]; 130	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 8	

}; 131	

 132	

int main (int argc, const char * argv[]) 133	

{ 134	

 FILE *fd; 135	

 int nread, ok, count; 136	

 char dummy[64],timeString[32]; 137	

 struct seismicOrigin theOrigins[2048], anOrigin; 138	

 139	

 fd = fopen("myHypocenters.txt", "r"); 140	

 if(fd == NULL) 141	

 { 142	

 fprintf(stderr,"Problem reading the input file!"); 143	

 exit(-1); 144	

 } 145	

 146	

 ok = 1; 147	

 count = 0; 148	

 while(ok>0) 149	

 { 150	

 nread = 151	

fscanf(fd,"%s %d %d %d %9s %f %f %f %f %s %s %s", 152	

 &anOrigin.catalogName[0], 153	

 &anOrigin.year, 154	

&anOrigin.month, &anOrigin.day, &timeString[0], 155	

 &anOrigin.latitude, 156	

&anOrigin.longitude, &anOrigin.depth, &anOrigin.magnitude, 157	

 158	

&dummy[0],&dummy[0],&dummy[0]); 159	

 160	

 sscanf(&timeString[0],"%2d",&anOrigin.hour); 161	

 sscanf(&timeString[2],"%2d",&anOrigin.minute); 162	

 sscanf(&timeString[4],"%f",&anOrigin.seconds); 163	

 164	

 if(nread < 1) ok = -1; 165	

 166	

 if(ok > 0) 167	

 { 168	

 169	

 printf("%4d %2.2d %2.2d %2.2d %2.2d %6.3f %9s %7.3f %7.3f %170	

5.1f %4.1f\n", 171	

 anOrigin.year, anOrigin.month, 172	

anOrigin.day, anOrigin.hour, anOrigin.minute, 173	

 anOrigin.seconds, timeString, 174	

anOrigin.latitude, anOrigin.longitude, anOrigin.depth, 175	

 anOrigin.magnitude); 176	

 theOrigins[count] = anOrigin; 177	

 count += 1; 178	

 } 179	

 180	

 } 181	

 182	

 fclose(fd); 183	

 184	

 185	

 return 0; 186	

} 187	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 9	

Hopefully you can copy and paste the source, otherwise we can mail it during this 188	

activity. Take a few minutes to read the code after you copy and paste it into the 189	

Xcode editor pane. Donʼt worry about the strange syntax if you are unfamiliar with 190	

C. This program is very simple, it opens a file called myHypocenters.txt, reads 191	

each origin from each line in the file and stores the results in an array of 192	

seismicOrigin structures. It also prints some of the information about each origin 193	

to the screen as it progresses through the input file. When it is done, it prints out 194	

how many origins it read, and closes the input file. 195	

Build and Run the program. You should see a statement that says that the input 196	

file cannot be found. If you donʼt see the output, choose Console from Xcodeʼs 197	

Run Menu. Thatʼs because we havenʼt told Xcode the path of folder we would like 198	

it to execute the program in when we click Run. 199	

Obviously, our program needs to be able to find our input file. Letʼs set that up. 200	

For convenience, move the USGS hypocenter file that you downloaded earlier 201	

into the folder than contains the Xcode sources. The name of the file has to 202	

match the name in the C source code, myHypocenters.txt. You donʼt have to 203	

move the data file into the project folder, itʼs just the way I did it to keep the files 204	

together. 205	

Now we need to set the path for the programʼs execution in Xcode. Make sure 206	

that you can see the Executables list in the left column of the Xcode window (see 207	

below). Select the executable (click once on neicOriginParser) and then click the 208	

blue Info Button on the Xcode toolbar (the top of the window). 209	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 10	

	
 210	

You should see a window that looks like the one below. Just beneath the Pseudo 211	

terminal popup menu is where you tell Xcode where you want to run the program 212	

when you click the Run or Build and Run button. Choose the Project Directory as 213	

the “working directory”. Thatʼs where we just placed my data. Check that the path 214	

XCode lists when you select this option, then close the information window. 215	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 11	

	
 216	

Now click Build and Run or Build and Debug in the toolbar along the top of the 217	

Xcode window. The program should run. It takes almost no time. If you donʼt see 218	

the output, choose Console from Xcodeʼs Run Menu. Hereʼs the output that I 219	

obtained. 220	

	
 221	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 12	

Congratulations, you just built a command-line tool with Xcode. You can find the 222	

executable in the Project folder (see below). You could move the executable to 223	

any folder that you want to use it - /usr/bin, ~/bin, etc. 224	

	
 225	

Command-Line Completion 226	

Letʼs add one line to the program because I want you to see how much Xcode 227	

helps you write your code using command-completion. Find the line near the end 228	

of main.c that contains fclose(fd);. Click at the end of the line using the mouse 229	

and then press return to add another line. Note that XCode automatically indents 230	

the new line to make the code more readable. Now slowly enter the line 231	

fprintf(stdout,"Parsed %d events.",count); 232	

As you begin to type, XCode will guess what you are about to type and present 233	

you with completion-options. To accept the completion, just enter a “tab”; to 234	

dismiss the suggestions, enter “esc”. If you accept the suggestion you can tab to 235	

the arguments in the completed text. Command-line completion is most useful 236	

when you know the start of a function call but may not remember all the details of 237	

the call. When you start using large libraries, this feature is indispensable. XCode 238	

will also complete variable names from within your code, saving you time and 239	

preventing many typographical errors. 240	

	
 241	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 13	

Elementary Xcode Debugging 242	

If that was all that Xcode did well, it would be a terrible waste of time to learn it. 243	

Of course it does much more. Iʼll finish by introducing the ever-important 244	

debugging features. Some of the most important items in debugging are 245	

breakpoints, which allow you to pause the program execution and examine the 246	

values of the variables in the program. To set debugger break points in Xcode, 247	

you just click to the left of a line of code. To clear breakpoints, you just drag them 248	

out of the region to the left of the code. Look below and then try to set a break 249	

point at the same location by clicking to the left of the source code. 250	

	
 251	

The blue arrow indicates that we have a breakpoint at the line that checks 252	

whether the read statement worked. If you Build and Run the program it will 253	

pause at that line and wait until you tell it to continue. 254	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 14	

	
 255	

While itʼs waiting for you to tell it what to do, you can examine the values of the 256	

variables in the code by hovering the mouse over the items of interest. Hover 257	

over the variable anOrigin and then move to the discloser triangle in the yellow 258	

box that opens. You should see something like: 259	

	
 260	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 15	

The debugger controls are along the top edge of the editor pane. The first icon 261	

lets you toggle all breakpoints off and on; the second one continues on from the 262	

stopped line; the third executes the next line and pauses, etc. To continue 263	

executing the program, click on the second icon, which looks like a “play” button 264	

in the debugger controls. 265	

	
 266	

A breakpoint can be more sophisticated. Suppose that we wanted to pause only 267	

when the year was 2010? Then we can change our breakpoint to be conditional. 268	

If you click once on a breakpoint, it will turn light blue, indicating that it is 269	

suspended. Double-click on the blue breakpoint indicator to open the breakpoint 270	

editor. 271	

In the illustration below, Iʼve set a condition to pause at this breakpoint only if 272	

anOrigin.year equals 2010. You edit the condition field by double-clicking in it 273	

(like any other text field). Thatʼs a conditional breakpoint. Try it out. 274	

Introduction	
 to	
 Xcode	
 –	
 EarthScope	
 Short	
 Course	
 16	

	
 275	

The default settings for a new project create a debugger-compatible executable 276	

that includes information for tracking the execution and is a little larger and a little 277	

slower than a “release” version of a program. For the utility that we just 278	

developed this is not a big issue, it takes little time. For larger, more intensive 279	

calculations, optimizing the executable to run fast is a wise decision. You do that 280	

by choosing the “Release” version options (a popup menu in the XCode toolbar). 281	

Learning More 282	

Weʼll use Xcode again in the next section to create a simple calculator-like 283	

application with almost not code by relying on the vast frameworks (libraries) that 284	

Apple provides. Most of the documentation for Xcode and for these frameworks 285	

is electronic and supplemented by tutorials, videos, and screencasts from all over 286	

the web. It takes time to learn the details; but if you think about it, it canʼt be too 287	

hard since there are so many people writing iOS applications. 288	

