
Activity for the 2015 EarthScope Data Processing Workshop

Charles J. Ammon, Penn State

Follow along with this activity on your own.

Introduction
Goal: Demonstrate the utility of git sufficiently for you to recognize the importance of
learning more about it.

As a scientist is essential that you work to produce reproducible results. An important
part of that process is keeping reords of your work. A scientific notebook is probably
the most important part of that effort. For computational work, having a record of code
changes is just as important. The importance of tracking changes to computer software
has led to the development of source-version-control packages that allow you to
document and record changes made to software - or at this point, any text files that
you might be modifying.

Whether you are writing C, python, fortran, or matlab scripts, these computer tools
provide you with an opportunity to keep a history of your code modifications. They also
allow you to "roll back" any changes that may not have been a good idea.

Work through the following exercise to become familiar with the basics of git (and to
gain some more experience with the Atom editor).

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 1



Activity Setup
Open a terminal and "cd" to the folder containing the files for this exercise
(.../Editors_and_Codes/gitActivity). The folder contains a readme.md file in markdown
format and three C source files and a makefile that are used to build a simple
command-line utility that displays a line-printer version of an earthquake focal
mechanism.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 2



Build the Exceuteable

You can build the executable file using the make command. Make is a powerful tool
for building codes containing multiple files (but not too many, ie. hundreds or
thousands). We don't have time to get into it, but it is worth learning.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 3



You can list the files again to see what make did. The executeable is called lprmech,
the files that end in ".o" are compiled (binary object files) versions of the C code
created with the clang compiler. The last line in the make output is the linking step that
linked the object files together to create the executable.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 4



Test the Executable

To run the program, enter ./lprmech, you'll see a short usage statement showing you
that the command accepts three command-line arguments, strike, dip, and rake.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 5



If you provide values for the strike, dip, and rake, you can see what this simple utility
does. Here's a sample output.

The code is quite useful for a quick display of focal mechanisms (that you can easily
paste into email messages or notes). There are some things that we should change,
however. One of the changes that we want to make is highlighted above. The new

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 6



name of the the centroid-moment-tensor project is the Global Centroid Moment-Tensor
project, no longer the Harvard Centroid Moment-Tensor project. Before we tinker with a
working code, however, we should use git to save the working version and track the
changes that we make in a way that we can undo our changes, in case we make an
error.

Using Git
What we want to do next is create a local git repository to track changes that we are
going to make in the code. git should be installed on the computers that you are using.
If it's not on your computer, you can install it relatively simply. Follow the instructions at
http://git-scm.com.

To see if git is live on the machine you are using, enter which git at the unix prompt.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 7

http://git-scm.com


git Help

You can get help on git from the unix man page, enter man git at the unix prompt or
entering git --help at the prompt. There are also many web tutorials and at least one
free git book available online.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 8



We are not going to use most of those commands in this brief activity. We will focus on
some basic frequently used commands.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 9



Git Configuration

We'll want git to know whow made changes and how to contact that person, so before
we get too deep into the example, we'll configure that information into git. You'll want
to substitute your information in place of mine. We use the git config command to set
three items

• Our name
• Our email
• Our preferred editor

In the terminal, enter the commands as shown below.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 10



Creating the Git Repository

To create an empy git repository we simply use the git init command in the directory
containing the files fpr which we plan to track changes. In our cse, that's the folder that
we've been working in (with the C files, makefile, and readme.md). Enter the git init
command in the terminal and hit return.

Here is the result that you should see. I started with an ls -asF command so that we
could see hidden files and folders in the file list. The I entered git init, and again listed
the files. git created a subdirectory called .git inside the directory.

All the information needed by git will be placed inside the .git subdirectory. You can
move the entire directory containing the source files and .git without affecting git's
ability to track changes.

Right now, the .git folder is empty, nothing is stored within it, our first step using git is
to add the files that we want to track to the repository. Adding changes to the

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 11



repository is a two-step process. First we stage the changed files (and right now all
files are changes since the repository is empty), then we commit the changes.

We'll start with an oft-used git command, git status. That will show us what files git
recognizes in our project.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 12



Staging Files for a Commit

git tells use that there's nothing to commit at this point, but the directory contains
untracked files. We want git to track the C codes, the Makefile, and the readme.md file.
There's no point in tracking the *.o files since they are created from the C codes and
the make file.

We stage or ready the files of interest for commit using the git add command.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 13



Again, git provides some hints for what we might want to do next in the status
command. If we wanted to unstage a file we can use git rm --cached <file> or we can
add some of the untracked files.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 14



Commiting Changes to the Repository

We are now ready to create the initial commit of the source codes to the repository. An
important part of committing changes is describing those changes. This can be done
on the command line using

git commit -m "description ..."

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 15



We can check the status of our repository using the git status command, and then
check the history of the respository using the git log command.

The git log command shows us the "hash" (the long string of hexidecimal numbers),
the author, the date, and the message describing this commit. If at some point we want
to revert back to this state of code, we would use the hash to identify this particular
snapshot of the codes.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 16



Changing the Codes

Now that we have the original codes safely recorded in the git repository, we can begin
to modify the them without fear of losing the original working version (and without
producing a suite of directories called "original", "new", "newer", etc.

Start up Atom and open the directory containing the lprmech source codes.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 17



Single-click the lprmech.c file so that we can change the output statement to include
"GCMT Convention" in place or "Harvard Convention". The change should be made on
line 41. Select the word Harvard and replace it with GCMT.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 18



Save the change to lprmech.c and go back to the terminal and execute a git status
command.

You will see that git has recognized a change to the tracked file lprmech.c, as shown
below.

Recognize the change is all git has done so far. If we want to commit this change, we
need to stage the modified file with git add, and then commit the changes with git
commit. We are not done yet.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 19



Two other references to the Harvard CMT remain in the code. Look at lines 7 and 8,
which contain function names that include the abbreviation hrv. We might as well
change those as well.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 20



However, these function names appear in several files in our project. We'll have to
change them in multiple files. To find all the instances of ar_to_hrv_mij in our project,
select Find in Project from the Find Menu.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 21



Here's the results of the search. The function name occurs in three places over two
files.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 22



To change all occurrences of the function name, use the form at the bottom of the
Project Find Results tab.

Repeat the procedure to change hrv_to_ar_mij to gcmt_to_ar_mij. Dismiss the find
subwindow using the Toggle Find in Project menu item in the Find Menu.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 23



The git status should now show two modified files.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 24



Before staging and committing the changes, make the executable and test it. You
should see a correct output, including the label "GCMT" in place of Harvard. Once you
are sure that the codes work, stage the files for the commit using git add.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 25



Then commit the changes using git commit -m "description...".

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 26



Now we have two commits (or versions of our codes stored within the git repository).
you can see them with git log.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 27



Multiple Cursors in Atom

Let's make one more change to the codes. If you look closely, the variables that are
used to represent strike, dip, and rake are the uninformative x0, x1, and x2. This is not
a good programming practice.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 28



We'll use the mulitple cursor feature in Atom to change these variable names to
something more informative, like theStrike, theDip, theRake.

In the editor, select x0 in line 16. Then enter the key comination ctrl-cmd-g (hold the
control and command keys down and then press g). This will select all instances of x0
in the file.

When all the x0's are selected, enter theStrike, the replace all instances of x0 with
theStrike.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 29



An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 30



Repeat the procedure for the x1 and x2 variables and save the results. The stage the
file, and commit the change into the git repository.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 31



Now we have three commits in the git repository.

Undoing

Just about anything in the git repository can be undone and you can reocver earlier
versions or the code, but you have to be careful when doing so. You can revert any file
that has not yet been committed using

git checkout <filename>

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 32



If you've already committed changes that you want to undo, then you use

git reset <last good commit hash>

Be careful with that, it will revert to the referenced commit. Of course if you have to
recover from a reset, you can, but things can get confusing. You can use git reflog and
git reset or git checkout. For a complete description of the process, see

https://github.com/blog/2019-how-to-undo-almost-anything-with-git.

Right now, our changes are probably worth keeping, so we won't revert anything. But
suppose that we wanted to extend the program, say by adding a function to compute
the stress axes and slip vector for the specified strike, dip, and rake.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 33

https://github.com/blog/2019-how-to-undo-almost-anything-with-git


Branches

Git provides a superb facility for experimenting with the code. We can create a new
branch of the code, make changes, test them, decide whether to keep them, and then
later merge the experimental branch with the "master" branch that we just created.

We start by "checking out" the existing code into a new branch, which we'll call
slipvector. Specifically, we create the new branch with the git checkout command,
and then list the branches with the git branch command. The asterisk indicates that
we are now working with the slipvector branch.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 34



We can create a file called slipvector.c and add it to the slipvector branch of the code
using git add. Use git status to check the state of the repository.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 35



We can then commit the change (the addition of the slipvector.c file to the slipvector
branch).

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 36



We can switch back and forth between the branches using git checkout to checkout a
particular branch. Note that when I return to the master branch, the file slipvector.c is
not in the working directory.

Once we complete development of the slipvector.c code, test it, and are satisfied that it
works, we can git merge the slipvector branch with the master branch. We can always
checkout the master branch if someone needs the code before we complete the
addition of the slipvector feature (or we mess everything up, we can delete the
experimental slipvector branch and start over).

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 37



Exploring git and http://github.com
We have barely scratched the surface of git's capabilities and applications. You can
use it with latex documents (it's not the most efficent situation, but it will work), or any
other text files that you maintain.

You should have no problem finding tutorials and information on git. Explore them
because git will help you stay organized, track your software development and help you
create more reproducible results.

We have discussed local repositories that are located on the computer that we are
using. The broad computing community has largely adopted cloud-based repositories
that form a valuable resource, and help make sure the codes are backed up, and easy
to install on new systems. Browse or search http://github.com for an incredible number
of projects. If you haven't visited that site, you may be surprised to see how much code
is being shared with git respositories.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 38



The GitHub App

Using the command line is a good way to start using git, and may be the only way to
use it when you are remotely logged into a machine. However, there are GUI tools that
can allow to use git more conveniently.

Connect to http://mac.gihub.com and download GitHub for the mac. Then launch the
application.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 39

http://mac.gihub.com


Open the lprmech git repository that you just created.

Select Add Local Repository from the File Menu. The navigate to the folder containing
your recently created lprmech repository. I was working in the folder gitActivity, so I
selected that folder.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 40



An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 41



You'll see a list of repositories on the left, the list of commits in the selected repository
in the middle, and then a comparison of the changes included in the selected commit
on the right. You can browse the history of the file quite conveniently with this tool.

Select some of the commits to review your actviity.

The GitHub app also lets you publish your repository to http://github.com, which allows
you to share your work with others and back up your work to the cloud. github
memberships are free, and although most repositories are public, they allow a few
private repositories for educational work, and more if you are willing to pay a small
annual fee.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 42

http://github.com,


Penn State runs their own online git service based on the http://git.psu.edu software
that members of Penn State community can use to create and store repositories. I am
sure that your institution likely has a similar resource.

We don't have time to explore the many features and uses of github, but I recommend
you make some time when you can. To get started, go to github.com and search for
user:USGS, you'll see many software items being distributed by one part of our
community. For general exploration, click the explore link on the github home page.

An Introduction to Version Control
with Git

AN INTRODUCTION TO VERSION CONTROL WITH GIT 43

http://gitlab

	Introduction
	Activity Setup
	Build the Exceuteable
	Test the Executable

	Using Git
	git Help
	Git Configuration
	Creating the Git Repository
	Staging Files for a Commit
	Commiting Changes to the Repository
	Changing the Codes
	Multiple Cursors in Atom
	Undoing
	Branches

	Exploring git and http://github.com
	The GitHub App
	Open the lprmech git repository that you just created.


