{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Earthquake Patterns in Areas of Fracking\n",
"\n",
"by Reva Kakaria\n",
"\n",
"According to the USGS, fracking as a method to extract oil and natural gas has been in use in the United States for the past five decades. However, only more recently have newer methods of fracking pushed it into the high rate of use we see today.\n",
"\n",
"The following map by the USGS illustrates where in the United States fracking occurred from 2011 to 2014: \n",
"\n",
" \n",
" \n",
"In this notebook, I aim to look at seismic data from some of the areas highlighted in the above figure and see whether there has been any increase in earthquakes over the last decades which might correlate to fracking. Of course, there are a number of other factors that could contribute to the presence or absence of seismic activity; however, given that these areas generally are not earthquake-prone, I feel that looking at seismic trends over time is a useful approach.\n",
"\n",
"The three areas I will be considering in detail are those of high fracking rates in North Dakota, Oklahoma, and Texas."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step one is to import libraries:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import matplotlib.dates as mdates\n",
"from obspy import UTCDateTime\n",
"from obspy.clients.fdsn import Client\n",
"client = Client(\"IRIS\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"North Dakota\n",
"\n",
"I will begin with North Dakota, looking at seismic activity with a magnitude of 1.0 or above and a time period from 1950 to 2020. Below, I set my search parameters according to this timeframe, using a latitude and longitude near the center of the red area in the USGS map."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"startt = UTCDateTime(\"1950-01-01\")\n",
"endt = UTCDateTime(\"2019-12-31\")\n",
"minmag = 1.0\n",
"maxrad = 1.5\n",
"lon = -102.484722\n",
"lat = 47.981667"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"cat = client.get_events(starttime=startt, endtime=endt, latitude=lat, longitude=lon, maxradius=maxrad, minmagnitude=minmag, catalog=\"ISC\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"28 Event(s) in Catalog:\n",
"2014-05-06T16:01:14.860000Z | +47.606, -104.427 | 2.6 ML\n",
"2012-09-28T10:53:42.960000Z | +48.048, -103.350 | 3.5 ML\n",
"...\n",
"1982-03-09T13:10:47.030000Z | +48.534, -104.073 | 3.3 MBLG\n",
"1975-09-05T20:47:40.690000Z | +48.366, -104.377 | 3.9 ML\n",
"To see all events call 'print(CatalogObject.__str__(print_all=True))'\n"
]
}
],
"source": [
"print(cat)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, I will create separate lists for the times and magnitudes of the five events. These lists will then be used to graph seismicity over time."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"times = []\n",
"magnitudes = []\n",
"for quake in cat:\n",
" times.append(mdates.date2num(quake.origins[0].time.datetime))\n",
" magnitudes.append(quake.magnitudes[0].mag)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFTlJREFUeJzt3X+Q3PV93/Hn2yspwic7yHAOFFBkJk47bmLu4JCI5NbEGsBHVDOeQEPi2AS7w0zrTnHrNLVjzDSYNHWm42QyeOowJh4au8ExkFbW+KLQgJ2C6sMn7vgpsEWSxmbAyFiAdUHIur77x/d71urYQ3unvdu9/TwfMzv73c/3s99766u9fd1+Pt/vfiMzkSSV5zXdLkCS1B0GgCQVygCQpEIZAJJUKANAkgplAEhSodoOgIhoRMRkROxsse7HIuKLEbEvIsYjYmMni5Qkdd5CPgFcC+ydZ90HgAOZ+VPA7wGfPNHCJElLq60AiIgzgV8APjtPl8uAW+vl24FtEREnXp4kaamsarPf7wO/AbxunvVnAN8GyMwjEfECcArwvfk2eOqpp+bGjRvbr1SSxJ49e76XmYOd2NZxAyAitgPPZuaeiLjwRH5YRFwDXAOwYcMGJiYmTmRzklSciPi/ndpWO0NAW4F3RcTfArcB74iIz8/p8xRwVl3cKuDHgefmbigzb87MkcwcGRzsSIBJkhbpuAGQmR/NzDMzcyNwJXB3Zv7qnG47gKvq5cvrPn7LnCT1sHbnAF4hIm4AJjJzB3AL8McRsQ/4PlVQSJJ62IICIDO/Cny1Xr6+qf0QcEUnC5MkLS3PBJakQi16CEg6rpkZGBuDyUkYHobRUWg0ul2VpJoBoKUxMwOXXALj4zA9DQMDsHkz7NplCEg9wiEgLY2xserN/+BByKzux8erdkk9wQDQ0picrP7ybzY9DVNT3alH0isYAFoaw8PVsE+zgQEYGupOPZJewQDQ0hgdrcb8162DiOp+8+aqXVJPcBJYS6PRqCZ8x8aqYZ+hIY8CknqMAaCl02jA9u3VTVLPcQhIkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQxw2AiFgbEfdHxIMR8WhE/FaLPr8WEfsjYqq+/YulKVeS1Cmr2ujzMvCOzDwYEauBeyNiLDO/PqffFzPzX3e+REnLZmYGxsZgz55qudGA886D0dFquTSz+2NyEoaH+24/HDcAMjOBg/XD1fUtl7IoSV0wMwOXXALj43Dw4NH2gQG44ALYtauv3vyOq3l/TE9X+2Hz5r7aD23NAUREIyKmgGeBuzJzvEW3X4yIhyLi9og4q6NVSlp6Y2OvfPOH6s1vfLxaX5Lm/ZFZ3ffZfmgrADJzJjOHgDOBTRHxM3O6fBnYmJlvBe4Cbm21nYi4JiImImJi//79J1K3pE6bnKze7FuZnoapqeWtp9ta7Y8+2w8LOgooM58H7gHeOaf9ucx8uX74WeC8eZ5/c2aOZObI4ODgYuqVtFSGh6thjlYGBmBoaHnr6bZW+6PP9kM7RwENRsTJ9fJJwEXA43P6nN708F3A3k4WKWkZjI5WY9yt3vQ2b67Wl2R2f6xbBxHVfZ/th3aOAjoduDUiGlSB8aeZuTMibgAmMnMH8G8i4l3AEeD7wK8tVcGSlkijUU1wjo3BAw/AkSOwahWce27fHf3Slub9MTVV/eXfZ/shqoN8lt/IyEhOTEx05WdL0koVEXsyc6QT2/JMYEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVDtfBmctPL0+aX8pE4wANR/CriUn9QJDgGp/xRwKT+pEwwA9Z8CLuUndYIBoP5TwKX8pE4wANR/CriUn9QJTgKr/xRwKT+pEwwA9adGA7Zvr26SWnIISJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSrUcQMgItZGxP0R8WBEPBoRv9Wiz49FxBcjYl9EjEfExqUoVpLUOe18AngZeEdmngMMAe+MiAvm9PkAcCAzfwr4PeCTnS1TktRpxw2ArBysH66ubzmn22XArfXy7cC2iIiOVSlJ6ri25gAiohERU8CzwF2ZOT6nyxnAtwEy8wjwAnBKJwuVJHVWWwGQmTOZOQScCWyKiJ9ZzA+LiGsiYiIiJvbv37+YTUiSOmRBRwFl5vPAPcA756x6CjgLICJWAT8OPNfi+Tdn5khmjgwODi6uYklSR7RzFNBgRJxcL58EXAQ8PqfbDuCqevly4O7MnDtPIEnqIava6HM6cGtENKgC408zc2dE3ABMZOYO4BbgjyNiH/B94Molq1iS1BHHDYDMfAgYbtF+fdPyIeCKzpYmSVpKngksSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVqp0vg5Ok/jQzA2NjMDkJw8MwOgqNRrerWjYGgKQyzczAJZfA+DhMT8PAAGzeDLt2FRMCDgFJKtPYWPXmf/AgZFb34+NVeyEMAEllmpys/vJvNj0NU1PdqacLDABJZRoeroZ9mg0MwNBQd+rpAgNAUplGR6sx/3XrIKK637y5ai+Ek8CSytRoVBO+Y2PVsM/QkEcBSVIxGg3Yvr26FcghIEkqlJ8AJJWh1Ulf4IlgktTXWp30tWlTte7++z0RTJL6VquTvnbvrm6eCCZJfazVSV+HDlW3Zp4IJkl9ptVJX2vXVrdmnggmSX2m1UlfW7ZUN08Ek6Q+Nt9JX1D0iWCRmV35wSMjIzkxMdGVny1JK1VE7MnMkU5syyEgSSqUASBJhTIAJJXr8GG4/nrYtq26P3x4Yc+fmYGdO+ETn6juZ2aWps4l4iSwpDIdPgynnQYHDlSP774bbroJnnkG1qw5/vP74JKSfgKQVKYbbzz65j/rwIGqvR19cElJA0BSme67r3X77t3tPb8PLilpAEgq09atrdu3bGnv+X1wSUkDQFKZrrsO1q8/tm39+qq9HX1wSUkngSWVac2aasL3xhurYZ8tW6o3/3YmgKEvLinpmcCStIIs65nAEXFWRNwTEY9FxKMRcW2LPhdGxAsRMVXfru9EcZKkpdPOENAR4MOZ+UBEvA7YExF3ZeZjc/r978ws88rKkrQCHfcTQGY+nZkP1Ms/APYCZyx1YZKkpbWgo4AiYiMwDIy3WP1zEfFgRIxFxD/uQG2SpCXU9lFAEbEOuAP4UGa+OGf1A8BPZubBiLgU+B/Am1ts4xrgGoANGzYsumhJ0olr6xNARKymevP/QmbeOXd9Zr6YmQfr5a8AqyPi1Bb9bs7MkcwcGRwcPMHSJUknop2jgAK4BdibmZ+ap89pdT8iYlO93ec6WagkqbPaGQLaCrwXeDgiZr/k4jeBDQCZ+RngcuBfRsQR4CXgyuzWCQaSpLYcNwAy814gjtPnJuCmThUlSVp6fheQJBXK7wKSVI6Zmeq7eyYnq2/z3LYNfud3qq+G3rp1Yd8F1AcMAEllaHUFr0OH4MiRav1CrwjWBxwCklSGVlfwmn3zn7WQK4L1AQNAUhlaXcGrlXavCNYHDABJZWh1Ba9W2r0iWB8wACSVYe4VvAYGYNWcadCFXBGsDzgJLKkMra7gNXsU0GKuCNYHvCKYJK0gy3pFMElSfzIAJKlQBoCksszMwJ/9GVx4IZxzTjXuf/hwt6vqCieBJZVjZgYuugjuuedo20MPwac/Dd/9blETwOAnAEklGRuDe+99Zfvzzxd1BvAsA0BSOSYn4Yc/bL2uoDOAZxkAksoxPAyrV7deV9AZwLMMAEnlGB2Ft73tle0nn1zUGcCzDABJ5Wg04K674M47jx4F9LGPFTkBDB4FJKk0jQa8+93VrXB+ApCkQhkAksriiWA/4hCQpHJ4Itgx/AQgqRyeCHYMA0BSOTwR7BgGgKRyeCLYMQwASeXwRLBjGACSyuGJYMfwKCBJZfFEsB/xE4AkFcoAkKRCOQQkqSwzM7BzJ3zpS9XjK66A7duroaHCGACSyjEzAxdfDF/7WrUMcNtt8Pa3w1/8RXEh4BCQpHKMjVUnfM2++UO1vHt3ta4wBoCkckxOwqFDr2w/dAimppa/ni4zACSVY3gY1q59ZfvatTA0tPz1dJkBIKkco6PVVz40j/U3GlXb6Gj36uoSJ4EllaPRqCZ7d+6E22+v2i6/3KOAJKkIjQZcdll1K9xxh4Ai4qyIuCciHouIRyPi2hZ9IiL+ICL2RcRDEXHu0pQrSeqUduYAjgAfzsy3ABcAH4yIt8zpMwq8ub5dA/zXjlYpSZ300ktw5ZVw9tnV/UsvdbuirjjuEFBmPg08XS//ICL2AmcAjzV1uwz4b5mZwNcj4uSIOL1+riT1jpdegte/Ho4cqR7/zd/AHXfAiy/CSSd1t7ZltqCjgCJiIzAMjM9ZdQbw7abH36nbJKm3XH310Tf/WUeOVO2FaTsAImIdcAfwocx8cTE/LCKuiYiJiJjYv3//YjYhSSfm/vtbt3/jG8tbRw9oKwAiYjXVm/8XMvPOFl2eAs5qenxm3XaMzLw5M0cyc2RwcHAx9UrSidm0qXX7+ecvbx09oJ2jgAK4BdibmZ+ap9sO4H310UAXAC84/i+pJ33uc7BqzvTnqlVVe2HaOQ9gK/Be4OGImP2yjN8ENgBk5meArwCXAvuAvwfKG0yTtDKcdFI14Xv11dWwz/nnV2/+hU0AQ3tHAd0LxHH6JPDBThUlSUvqpJOqr4EunN8FJEmFMgAkqVAGgKTyHD4M118P27ZV94cPd7uirvDL4CSV5fBhOO00OHCgenz33XDTTfDMM7BmTXdrW2Z+ApBUlhtvPPrmP+vAgaq9MAaApLLcd1/r9t27l7eOHmAASCrL1q2t27dsWd46eoABIKks110H69cf27Z+fdVeGANAUlnWrKkmfD/+8eoooI9/vMgJYPAoIEklWrMGbrih21V0nZ8AJKlQfgKQVJ6ZGRgbg8lJGB6G0dHqYvGFMQAklWVmBi65BMbHYXoaBgZg82bYtau4EHAISFJZxsaqN/+DByGzuh8fr9oLYwBIKsvkZPWXf7PpaZiaat2/jxkAksoyPFwN+zQbGIChoe7U00UGgKSyjI5WY/7r1kFEdb95c9VeGCeBJZWl0agmfMfGqmGfoSGPApKkYjQasH17dSuYQ0CSVCgDQJIKZQBIUqEMAEkqlAEgSYWKzOzOD474AfBEV354Z5wKfK/bRZwA6++ulVz/Sq4dVn79/zAzX9eJDXXzMNAnMnOkiz//hETEhPV3j/V3z0quHfqj/k5tyyEgSSqUASBJhepmANzcxZ/dCdbfXdbfPSu5drD+H+naJLAkqbscApKkQnU0ACLijyLi2Yh4pKntnIj4PxHxcER8OSJeX7dvjIiXImKqvn2m6Tnn1f33RcQfRER0ss4Trb1e99Z63aP1+rXdqn2h9UfEe5r2+1RE/L+IGFpB9a+OiFvr9r0R8dGm57wzIp6o6//IctS+iPrXRMTn6vYHI+LCpud0a/+fFRH3RMRj9Wv62rr9DRFxV0R8q75fX7dHXd++iHgoIs5t2tZVdf9vRcRVPVj7P6r/X16OiF+fs61lf/0sov731Pv84YjYHRHnLLr+zOzYDfinwLnAI01t3wDeXi+/H/hEvbyxud+c7dwPXAAEMAaMdrLODtS+CngIOKd+fArQ6FbtC61/zvN+Fniym/t+Efv/V4Db6uXXAn9bv54awJPA2cAa4EHgLT1Y/weBz9XLbwT2AK/p8v4/HTi3Xn4d8E3gLcDvAh+p2z8CfLJevrSuL+p6x+v2NwB/Xd+vr5fX91jtbwTOB34b+PWm7XTl9bOI+rfM7lNgtGnfL7j+pfjHbJzzS/ACR+cazgIea9Vvzs54vOnxLwN/uEy/BO3Wfinw+V6qfSH1z3nOfwJ+eyXVX9f1ZaogPqX+hXkD8HPArqbnfxT4aA/W/2ngvU39/hLY1O39P+ff8j+Bi6hO1jy96fXxRL38h8AvN/V/ol5/TM1z+/VC7U39/iPHBkBXXz8Lrb9uXw88tdj6l2MO4FHgsnr5CqpfhFlviojJiPhaRPyTuu0M4DtNfb5Tt3XDfLX/NJARsSsiHoiI36jbe6l2ePV9P+uXgD+pl1dK/bcD08DTwN8B/yUzv09V67ebnt+r9T8IvCsiVkXEm4Dz6nU9sf8jYiMwDIwDP5GZT9erngF+ol6eb1939f+gzdrn0/XXzyLq/wDVJzFYRP3LEQDvB/5VROyh+nhzuG5/GtiQmcPAvwP+ezSNsfeI+WpfBbwNeE99/+6I2NadEl/VfPUDEBGbgb/PzEdaPbkHzFf/JmAG+AfAm4APR8TZ3SnxVc1X/x9R/XJOAL8P7Kb693RdRKwD7gA+lJkvNq/L6s/Knj1scCXXDguvPyJ+nioA/sNif+aSfxVEZj4OXAwQET8N/ELd/jLwcr28JyKepPrL+ingzKZNnFm3Lbv5aqf65f2rzPxeve4rVOO/n6dHaodXrX/WlRz96x96aN/Dq9b/K8CfZ+YPgWcj4j5ghOqvn+ZPOT1Zf2YeAf7tbL+I2E01jHWALu7/iFhN9Qb0hcy8s27+bkScnplPR8TpwLN1+1O03tdPARfOaf/qUtYNC659PvP9m5bcQuuPiLcCn6WaI3qubl5w/Uv+CSAi3ljfvwa4DvhM/XgwIhr18tnAm4G/rj/yvBgRF9RHQLyPakxs2c1XO7AL+NmIeG1ErALeTjW+2zO1w6vWP9v2z4HbZttWUP1/B7yjXjdANQn5ONWk65sj4k0RsYYq4HYsd92zXuW1/9q6biLiIuBIZnb19VP/vFuAvZn5qaZVO4DZI3muaqpnB/C+qFwAvFDXvwu4OCLW10etXFy39VLt8+nK62eh9UfEBuBOqnmkb55Q/R2evPgTqqGdH1L9lfwB4Fqqv26+Cfxnjk6K/SLVGOkU8ADwz5q2MwI8QjWjfdPsc5Z44qXt2uv+v1rX/wjwu92sfZH1Xwh8vcV2er5+YB3wpXr/Pwb8+6btXFr3fxL42HLUvoj6N1JN8O0F/hfwkz2w/99GNcTwUP07OVXvy1OoJqm/Vdf6hrp/UE1mPwk8DIw0bev9wL76dnUP1n5a/X/0IvB8vfz6br1+FlH/Z6k+Lc72nVjs698zgSWpUJ4JLEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSrU/wdAp/C2yF/4nwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig1 = plt.subplots(1,1)\n",
"plt.xlim([mdates.date2num(startt.datetime),mdates.date2num(endt.datetime)])\n",
"plt.plot_date(times,magnitudes, color = \"red\", marker='.', markersize = 10) \n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It seems that North Dakota had an anomalous burst of seismic activity in the early 2010s, around the same time, according to the USGS map, that fracking was occurring at a high rate.\n",
"\n",
"We can also look at the seismicity rate for each year:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAADsZJREFUeJzt3X2sZHddx/H3h9420Cco9FILRW5JoKZBpPWKKAjYAimPJUGlBUyxmI2CWhAkbTCiUZOChFSjkWxooYm1qAUCKCJLKVYFau+2S9mHQqHWsrCwlyDyZCgtX/+Ys+n0tvfenTkzd/b+9v1KJvfMb87D9/z2zGd/c2bOTKoKSdLm96BZFyBJmgwDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktSIuY3c2IknnlgLCwsbuUlJ2vS2b9/+jaqaX2++DQ30hYUFlpaWNnKTkrTpJfnvg5nPUy6S1AgDXZIaYaBLUiMMdElqhIEuSY1YN9CTXJFkf5KdQ21/luTWJLck+UCSh023TEnSeg5mhP4e4JwVbduAJ1bVk4AvAJdMuC5J0ojWDfSquh745oq2j1XV3d3dzwCnTKE2SdIIJnEO/ULgnyewHklSD70CPcmbgbuBq9aYZ0uSpSRLy8vLfTYnSf0k994aNHagJ3kV8ELgFVVVq81XVVurarGqFufn1/0qAknSmMb6Lpck5wBvAp5ZVd+fbEmSpHEczMcWrwY+DZyWZG+SVwN/CRwHbEuyI8k7p1ynJGkd647Qq+r8B2i+fAq1SJJ68EpRSWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjVg30JNckWR/kp1DbQ9Psi3Jbd3fE6ZbpiRpPQczQn8PcM6KtouBa6vq8cC13X1J0gytG+hVdT3wzRXN5wJXdtNXAi+ZcF2SpBGNew79pKra101/DThptRmTbEmylGRpeXl5zM1JktbT+03Rqiqg1nh8a1UtVtXi/Px8381JklYxbqB/PcnJAN3f/ZMrSZI0jnED/UPABd30BcAHJ1OOJGlcB/OxxauBTwOnJdmb5NXApcBzktwGPLu7L0maobn1Zqiq81d56OwJ1yJJ6sErRSWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEb0CPcnrk+xKsjPJ1UkePKnCJEmjGTvQkzwa+B1gsaqeCBwBnDepwiRJo+l7ymUOeEiSOeBo4Kv9S5IkjWPsQK+qrwBvB+4E9gH/W1Ufm1RhkqTR9DnlcgJwLnAq8CjgmCSvfID5tiRZSrK0vLw8fqWSpDX1OeXybOC/qmq5qn4IvB/4+ZUzVdXWqlqsqsX5+fkem5MkraVPoN8JPDXJ0UkCnA3smUxZkqRR9TmHfgNwDXAT8LluXVsnVJckaURzfRauqrcAb5lQLZKkHrxSVJIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiN6BXqShyW5JsmtSfYk+blJFSZJGs1cz+X/HPhoVf1SkqOAoydQkyRpDGMHepKHAs8AXgVQVXcBd02mLEnSqPqccjkVWAbeneTmJO9KcszKmZJsSbKUZGl5ebnH5iRJa+kT6HPAmcBfV9UZwPeAi1fOVFVbq2qxqhbn5+d7bE6StJY+gb4X2FtVN3T3r2EQ8JKkGRg70Kvqa8CXk5zWNZ0N7J5IVZKkkfX9lMtvA1d1n3C5Hfi1/iVJksbRK9CragewOKFaJEk9eKWoJDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhrR99sWJenQl6zdVrVxtUyRI3RJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNaJ3oCc5IsnNSf5xEgVJksYziRH6RcCeCaxHktRDr0BPcgrwAuBdkylHkjSuviP0y4A3AT+aQC2SpB7GDvQkLwT2V9X2debbkmQpydLy8vK4m5MkraPPCP1pwIuT3AG8Fzgryd+snKmqtlbVYlUtzs/P99icJGktYwd6VV1SVadU1QJwHvCJqnrlxCqTJI3Ez6FLUiMm8iPRVfVJ4JOTWJckaTyO0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDVi7EBP8pgk1yXZnWRXkosmWZgkaTRzPZa9G3hDVd2U5Dhge5JtVbV7QrVJkkYw9gi9qvZV1U3d9HeAPcCjJ1WYJGk0EzmHnmQBOAO44QEe25JkKcnS8vLyJDYnadKSe2/atHoHepJjgfcBr6uqb698vKq2VtViVS3Oz8/33ZwkaRW9Aj3JkQzC/Kqqev9kSpIkjaPPp1wCXA7sqap3TK4kSdI4+ozQnwb8KnBWkh3d7fkTqkuSNKKxP7ZYVf8O+A6KJB0ivFJUkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY3o85ui0uoO/PJNVdvbVLse6Hga/kWnQ/A4c4QuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEb0CvQk5yT5fJIvJrl4UkVJkkY3dqAnOQL4K+B5wOnA+UlOn1RhkqTR9BmhPwX4YlXdXlV3Ae8Fzp1MWZKkUfUJ9EcDXx66v7drkyTNwNR/4CLJFmBLd/e7ST4/7W32dCLwjVkXcQiYTD8M/yDARpncNg/PY+H+/dd+P6x1zAweu38fbOyx/diDmalPoH8FeMzQ/VO6tvuoqq3A1h7b2VBJlqpqcdZ1zJr9YB8cYD9snj7oc8rlRuDxSU5NchRwHvChyZQlSRrV2CP0qro7yW8B/wIcAVxRVbsmVpkkaSS9zqFX1UeAj0yolkPFpjk9NGX2g31wgP2wSfogdQj+crUkaXRe+i9JjTgsAj3JFUn2J9k51PZTST6d5HNJPpzk+K59Icn/JdnR3d45tMz53fy3JPlokhNnsT/jGLEPXjG0/zuS/CjJk5McneSfktyaZFeSS2e3R6MbsQ+OTHJl174nySVDy9zRte9IsjSLfeljxH44Ksm7u/bPJnnW0DIv654Lu5K8dQa7MrYkj0lyXZLdXf0Xde0PT7ItyW3d3xO69p/o+ucHSd44tJ4HJ/nPrm92JfmjWe0TAFXV/A14BnAmsHOo7Ubgmd30hcAfd9MLw/MNzT8H7AdO7O6/DfjDWe/bNPpgxXI/CXypmz4a+MVu+ijg34DnzXrfpnQcvBx479B+3wEsdPfvOHAcbMbbiP3wWuDd3fQjge0MBoKPAO4E5rvHrgTOnvW+jdAHJwNndtPHAV9g8BUmbwMu7tovBt46tO8/A/wp8Mah9QQ4tps+ErgBeOqs9uuwGKFX1fXAN1c0PwG4vpveBrx0ndWkux2TJMDxwFcnWec09eiD8xl8rQNV9f2quq6bvgu4icH1B5vCiH1QDP6t54CHAHcB396IOqdtxH44HfhEt9x+4FvAIvA44LaqWu7m+zjrP4cOGVW1r6pu6qa/A+xhcKX7uQz+c6L7+5Junv1VdSPwwxXrqar6bnf3yO42szcmD4tAX8Uu7v3umV/mvhdJnZrk5iT/muQXAKrqh8BvAp9jEOSnA5dvYL3TsFYfHPAy4OqVjUkeBrwIuHZq1W2M1frgGuB7wD4GI9G3V9WBECzgY0m2d1dCt2C1fvgs8OIkc0lOBX66e+yLwGndKco5BsH3QMfPIS/JAnAGg9H1SVW1r3voa8BJB7H8EUl2MHgFv62qbphSqes6nAP9QuA1SbYzeMl1V9e+D/jxqjoD+F3gb5Mcn+RIBoF+BvAo4BbgkvuvdlNZrQ8ASPKzwPeraueK9jkGIf8XVXX7RhU7Jav1wVOAexj8W58KvCHJ47rHnl5VZzL4ptHXJnnGBtc8Dav1wxUMvqdpCbgM+BRwT1X9D4Pnw98xOPV2B4P+2lSSHAu8D3hdVd3nFVgNzqOsO9quqnuq6skMXq0+JckTp1LsQZj6d7kcqqrqVuC5AEmeALyga/8B8INuenuSLzF4OZqu7UvdMn/P4BzbprVaHww5jwcYnTP4TO5tVXXZdCucvjX64OXAR7tXZvuT/AeDUw23V9VXumX3J/kAg/C//n4r30TWeD7cDbz+wHxJPsXgfDNV9WHgw137FjZZoHeDtPcBV1XV+7vmryc5uar2JTmZwaj7oFTVt5JcB5wD7Fxv/mk4bEfoSR7Z/X0Q8PvAO7v78xl81zvdiOzxwO0Mvqfm9CTz3Sqew+C826a1Wh8Mtf0K3fnzofY/AR4KvG7jKp2eNfrgTuCs7rFjgKcCtyY5JslxQ+3PZUZP3kla4/lwdLefJHkOcHdV7V6xzAnAa4B3zaD0sXTvg10O7Kmqdww99CHggm76AuCD66xnvjv9SJKHMMiFWydf8UGa9bvNG3FjMMrcx+ANjb3Aq4GLGIw0vgBcyr0XWb2UwfnEHQze9HvR0Hp+g0GI38JgZPKIWe/bNPqgm/9ZwGdWrOMUBi9B93T9swP49Vnv25SOg2OBf+iOhd3A73Xtj2NwXvmz3WNvnvV+TbkfFoDPd//mHwceu2I9u7vbebPerxH74OndsXzL0LH8fAaf3rkWuK3b34d38/9Y11ffZvDG8F4GH4x4EnBzt56dwB/Mcr+8UlSSGnHYnnKRpNYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNeL/AXelKPmZq1LbAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig2, axes = plt.subplots(1,1)\n",
"axes.hist(times, bins=70, color=\"red\")\n",
"plt.xlim([mdates.date2num(startt.datetime),mdates.date2num(endt.datetime)])\n",
"axes.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Again, we see a similar trend: a leap in seismicity rates in the early 2010s."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Oklahoma\n",
"\n",
"Next, let us look at the region of Oklahoma in which extensive fracking has occurred, using the same process."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"lon1 = -99.671389\n",
"lat1 = 35.613889"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"cat1 = client.get_events(starttime=startt, endtime=endt, latitude=lat1, longitude=lon1, maxradius=maxrad, minmagnitude=minmag, catalog=\"ISC\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"459 Event(s) in Catalog:\n",
"2015-08-31T16:05:36.330000Z | +36.515, -98.469 | 2.5 mb_Lg\n",
"2015-08-30T21:24:41.670000Z | +36.504, -98.728 | 2.5 mb_Lg\n",
"...\n",
"1974-02-15T13:33:49.940000Z | +36.383, -100.525 | 4.5 mb\n",
"1966-07-20T09:04:59.500000Z | +35.650, -101.140 | 3.9 mb\n",
"To see all events call 'print(CatalogObject.__str__(print_all=True))'\n"
]
}
],
"source": [
"print(cat1)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"times1 = []\n",
"magnitudes1 = []\n",
"for quake in cat1:\n",
" times1.append(mdates.date2num(quake.origins[0].time.datetime))\n",
" magnitudes1.append(quake.magnitudes[0].mag)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+QXHWZ7/H3k87gQAIhwCgIwYG66i0XgZAxCQluYlKggVzUNTG4/gLdou7iKrqrXvFmV8Xorru3LLx6qzCFct3FK5hIaRITARWDZJaEScKPQIj8kIuywYwQAkkIYdrn/vE9faen0z3dp/v09DlzPq+qruk+5/Tp53z7TH+nz/eZ52vujoiI5M+ETgcgIiKdoQ5ARCSn1AGIiOSUOgARkZxSByAiklPqAEREckodgIhITqkDEBHJKXUAIiI5NbFTL3zSSSd5b29vp15eRCSTtm7d+kd370liXx3rAHp7exkYGOjUy4uIZJKZ/d+k9qVLQCIiOaUOQEQkp9QBiIjklDoAEZGcUgcgIpJTDXcAZlYws+1mtq7KusvNbNDM7otuf5VsmJJWxSKsWwdf/nL4WSx2OiIRaVScNNCrgZ3AcTXW3+Luf9N6SJIVxSK8/e2weTMcOACTJsGsWXDbbVAodDo6EamnoW8AZnYacAlwQ3vDkSzZsCF8+O/fD+7h5+bNYbmIpF+jl4CuAz4L/GmUbd5jZg+Y2Wozm1ZtAzO70swGzGxgcHAwbqySMtu3h7/8yx04APfd15l4RCSeuh2AmS0G9rj71lE2Wwv0uvvZwB3A96pt5O4r3b3P3ft6ehL5T2bpoOnTw2WfcpMmwbnndiYeEYmnkW8Ac4FLzexJ4GZggZndVL6Buz/r7i9HD28AZiQapaTSokXhmv/kyWAWfs6aFZaLSPrVHQR292uAawDMbD7waXf/QPk2ZnaKu++OHl5KGCyWca5QCAO+GzaEyz7nnhs+/DUALHlTyoZbtSo8XroUFi9O/+9C08XgzOxaYMDd1wCfMLNLgSHgOeDyZMKTtCsUwom+eHGnIxHpjGIRLroINm4cToO++WaYNw9uvz3dnYC5e0deuK+vz1UNVESybt268Bf/oUMjl3d3h28ESf9xZGZb3b0viX3pP4FFRFqwffuRH/4QlqU9I04dgIhIC6ZPD3/tV+ruTn9GnDoAEZEWLFoEc+aMvNZfKIRlac+I69iMYCIi40GhEAZ7162D1avDsiVLxnkWkIiIBIUCvPOd4ZYlugQkIpJT6gBERHJKHYCISE6pAxARySl1ACIiOaUsIBFJVLEYCgRu3x7+SSoPBQKzeszqAEQkMXmcJjTLx6xLQCKSmDxOE5rlY1YHICKJyeM0oVk+ZnUAIpKYPE4TmuVjVgcgIonJ4zShWT5mDQKLSGLyOE1ooQDr18OKFbBpE8ydC9dck42sIM0IJiLSgmpZQF1dcPgwHDyYfFaQZgQTEUmJallAe/eGziDtWUHqAEREWlAtC6hSWrOC1AGIiLSgWhZQpbRmBTXcAZhZwcy2m9m6KuteZWa3mNljZrbZzHqTDFJEJK0qs4AmTYKpU8PPtGcFxckCuhrYCRxXZd1Hgb3u/p/M7DLga8CyBOITEUm1aplPF10UpolMeyZUQ1lAZnYa8D3gK8DfuvviivW3AV909383s4nAM0CPj7JzZQGJiMTXiSyg64DPAn+qsf5U4HcA7j4E7ANObDk6ERFpm7odgJktBva4+9ZWX8zMrjSzATMbGBwcbHV3IiLSgka+AcwFLjWzJ4GbgQVmdlPFNk8D0wCiS0BTgGcrd+TuK929z937enp6WgpcRERaU7cDcPdr3P00d+8FLgN+6e4fqNhsDfDh6P6SaJvO/IuxiIg0pOlaQGZ2LTDg7muA7wD/ZmaPAc8ROgpJWFZnHZJs0PmVP7E6AHf/FfCr6P4/lC0/BCxNMjAZKcuzDkn66fzKJ/0ncEZkedYhST+dX/mkDiAjsjzrkKSfzq98UgeQEVmedUjST+dXPqkDyIgszzok6afzK580I1hG5HGmJRk7Or+SUyzCunWwalV4vHQpLF6czrbUjGAiIgkpFkMhuI0bw30IH/zz5oXicJoRTERknNqwAfr7hz/8Idzv709nRpU6ABGRhGzfDocOHbn80KF0ZlSpAxARScj06dDdfeTy7u50ZlSpAxARSciiRTBnzshr/YVCWJbGjCplAYmIJKRQCIO969bB6tVh2ZIl6c0CUgcgIuNKJ4valV77gQdg2bL0p9KqAxCRcaOTRe2yWFBPYwAiMm50sqhdFgvqqQMQkXGjk0XtslhQTx2AiIwbnSxql8WCeuoARGTc6GRRuywW1NMgsIiMG50sapfFgnoqBicikiEqBiciIi1TByAiklPqAEREcqpuB2Bm3Wa2xczuN7OHzOxLVba53MwGzey+6PZX7QlXRESS0kgW0MvAAnffb2ZdwN1mtsHd76nY7hZ3/5vkQ5TxoJP1WURK2nUevvQSXHEFbNkCfX1w5plw770wdy4sXw5HHdX6a7RD3Q7AQ5rQ/uhhV3TrTOqQZFIWa6TI+NOu8/Cll+C442BoKDz+7W+H1/3yl/Ctb8Ezz6SzE2hoDMDMCmZ2H7AHuMPdN1fZ7D1m9oCZrTazaYlGKZmWxRopMv606zy84orhD/9q9u6FFStae412aagDcPeiu58LnAbMNLOzKjZZC/S6+9nAHcD3qu3HzK40swEzGxgcHGwlbsmQLNZIkfGnXefhli31t+nvb+012iVWFpC7Pw/cCbyjYvmz7v5y9PAGYEaN56909z537+vp6WkmXsmgLNZIkfGnXefhzJn1t5kzp7XXaJdGsoB6zOz46P7RwIXAIxXbnFL28FJgZ5JBSrZlsUaKjD/tOg9vvBEmjjKaOnVqGAhOo0a+AZwC3GlmDwD3EsYA1pnZtWZ2abTNJ6IU0fuBTwCXtydcyaJCAdavh099Ct72tvBz/XoNAMvYKhRg7Vq45BLo7Q0/165t7jwsFsO0j1/+MvziF+E6/7JlYb8nnghdXXD88fCZz6R3ABhUC0jGgLKAJA0OH4aTTw4f1iVTp8b/gK51Pv/oR+FDv9KLL4ZvG0lRLSDJFGUBSRqsWDHywx+ay9CpdT7Xus5/8cXNxTsW1AFI2ykLSNJg06bqy+Nm6NQ6n594ovr2O3bE2/9YUgcgbacsIEmDuXOrL4+boVPrfD7zzOrbn1WZNJ8i6gCk7ZQFJGmwfHm45l+umQydWudzrW8S69c3F+9Y0CCwjIlSDZakZkpSbaHW5LX9Dh8O1/z7+8Nf/s3W6Sm137Zt4b+AzcKyXbvg9tvhhRfCsje8IWQK/cVfJNe+SQ4CqwOQzFFWUWvUfskob8f9+0ffdv58+PnPk2lfZQFJrimrqDVqv2SUt2M9v/51OttXHYBkjrKKWqP2S0a1dqylWExn+6oDkMxRVlFr1H7JqNaOtRQK6WxfdQCSOcoqao3aLxmldmykE3jrW9PZvhoElkxKOqsob9R+ySjPBjp8GB5/HJ5+Gp58MmQCnXYafOEL6c0CamRKSJHU6tDfL5lRK92zUIDFi8NtvKp17O1IgR0agrvugt/9Lnzoz5wZpoQcHIRVq0I7H310MseVJHUAkjlKY2xMntup1rGvXx9q8yTRJqXXuOeekYPBTz45crtVq+DWW0NRuLR1AhoDkMxRGmNj8txOtY59xYrk2qT0Go1kAhWLYerItFEHIJmjNMbG5Lmdah37pk3JtUmcNFAIl4TSRh2AZI7SGBuT53aqdexz5ybXJnHSQAHe8pb4r9Fu6gAkc5TG2Jg8t1OtY1++PLk2iZMGWiiEqSPTRmmgkklZSmPsZOG1LLVTM0Zr22rHDmEqx1WrQgewZEnI0Gm2TUrF5X71q/A6L744cn2hALNnw89+ltysYCoGJ5IRec7Eabe4bZv0e1ErC6iaBQtClVAVgxPJkTxn4rRb3LZN+r2IkwXU35/O91wdgEgb5TkTp93itm3S70WcLKBDh9L5nqsDEGmjPGfitFvctk36vYiTBdTdnc73vG4HYGbdZrbFzO43s4fM7EtVtnmVmd1iZo+Z2WYz621HsCJZk+dMnHaL27ZJvxdxsoDmzEnne153ENjMDJjk7vvNrAu4G7ja3e8p2+Yq4Gx3/69mdhnwbndfNtp+NQgslYpF+PGPQ/GsJ5+EY44JNVV++tMjt73kkpDJcfTR8NJL4b8sN28OWRj79oVthobC+re/Hf7wB3jggbDPefPgAx9oLfsj7nGNZSZOvayjYnE4EwZg6dL6bZHWKSRLWTibNoUc/+XLQ1y1Yi3f/vzz4bzz4KGHmj+mUrv098PKlfDssyPXT5gA73oX3HRTcmUgkhwExt0bvgHHANuAWRXLbwPOj+5PBP5I1LnUus2YMcNFSoaG3OfPdw/Dc43fnn3WfeLE+M8D9wULwuuOJ0ND7gsXuk+e7G4Wfi5cOHycQ0PhuAuF4XYoFEZvi3r77JRqcS1YEG7VYq3cvlAYbodWjungwZHtWe123HHuL7+czHEDAx7jc3u0W6Mf/AXgPmA/8LUq63cAp5U9fhw4abR9qgOQcmvXNvdBPm1acx/+4N7dHV53PFm7NnyYlR/n5MnDx7l2bTjuOG1Rb5+dUi2u7u4jj68Ua7XtkzimZcsaO9/+/u+TOe4kO4CGBoHdveju5wKnATPN7Kxmvm2Y2ZVmNmBmA4ODg83sQsap7dvDJZu4du9u/jXTmpnRinqZLtu3h+OuNFpbpDWTqVpchw4deXylWOtl7TR7TFu2NLZdf3/8fbdbrCwgd38euBN4R8Wqp4FpAGY2EZgCVFwNA3df6e597t7X09PTXMQyLk2fDhObKE5+yinNv2ZaMzNaUS/TZfr0cNyVRmuLtGYyVYuru/vI4yvFWi9rp9ljmjmzse3mzIm/77ar9xUB6AGOj+4fDfwaWFyxzceA66P7lwE/rLdfXQKSchoDSIbGADQGEOfWSBbQ2cD3COMAE6IP92vN7NookDVm1g38GzAdeA64zN2fGG2/ygKSSpVZQJMmhQqK1bKAzjgDvva1MNXe4cPpzgIaa/WyjkpZQKtXh8eN1MNJY02h8mym8ro+UDvWallADz/c2DGVZ0KddVa49HPzzWHdu98Na9aEKSErzZ4Nd9yhWkAjqAOQuFRXR0qaORdaOX8qnxv3Y3PKFNizB446Kt7zqlEtIMkl1dWRkmbOhVbOn8rnxrVvX/jmkTbqACQz0pqNImOvmXOhlfMn7uxf1WQ+C0ikk9KajSJjr5lzoZXzJ+7sX9WkMQtIHYBkhurqSEkz50Ir50/lc+OaMiWUqUibJjKvRTqjUAgDdq1ko6S1pk3atbvd4u6/mXOhUID16+Haa2HtWpg6Fa666sjXvuiiMHlLZSzr1w9nEM2eDS+/DDfcEP7xbNq0kAFUbXygtzfEmMQAcNKUBSS5oSyi5rS73cbqfSkWw4f7xo3hPoT9H3ssvPIKHDwYXrurK6SLlh7PmhU+/C++eGSMhw7F++/1gweTKQinLCCRJiiLqDntbrexel9KVTtLH/4Q7j///HBq5/79sHfvyMebN4e//CtjjFu65Iorkj2eJKgDkNxQFlFz2t1uY/W+1KqDVM+BA+GyT6tZQPfe29rz20EdgOSGsoia0+52G6v3pVYdpHomTQpzDbSaBfSWt7T2/HZQByC5oSyi5rS73cbqfVm0KKRilo8rTJgAxx8fPtzNws+pU4cfl2JZvnxkjJMmxS9eeOONyR5PEjQILLlSbQapdmdnjIfMo3bXAhqrWkOHDw9nAZ1wAnz84+G1/vEfh+sDnXMO/OQnw/WFFi0KWUFbt4Y4J04MNYTmz4ePfCSse+mlsO9adu+Gk09O5hhUC0ikCZ3IAlLmUXpUey9KpZy3bAnLJkwY3nby5CPXl2cFveMdcOedjb/+88+H/wdolbKARJrQiSwgZR6lR7X3or8/3ErLisXhLKFq68uzgu6+O97r6z+BRTqoE1lAyjxKj0ZnEKu3vpQV9Mor8V7/iVEL5HeGOgDJjU5kASnzKD0anUGs3vpSVlBXV7zXP/PMeNuPBXUAkhudyAJS5lF6VHsv5swJt9KyQmF4bKba+vKsoAsuiPf6aawGqkFgyZVOzGyVxtm08qraewHDy9785vD4wQerry9//4rFMAvYddfBzp1hNrpql5NKtYCSGAAGZQGJSAqMh/TWuKoVjvvpT+Ff/gXuuad6Mbjzzgv1h9I4JaSqgYpIbHlMb612zF1doXbQaLZtCwXnXnwxuU4gKRoDEJHY8pjeWu2Y6334l7v44vbF1ix1ACISWx7TW1udFnLHjuRiSYo6ABGJLY/pra1OC3nWWcnFkpS6HYCZTTOzO83sYTN7yMyurrLNfDPbZ2b3Rbd/aE+4IpIGeUxvrTzmUuG4Rq1f377YmtXIIPAQ8Hfuvs3MjgW2mtkd7v5wxXa/dvfFyYcokn6NZsTEzZypt32nMnGSmJ4za6od86xZIcvn6aerZwCVPPFE+gaAoYEOwN13A7uj+y+a2U7gVKCyAxDJpUYzYuJmztTbvtOZOIUCLF4cbnlRfsz79oVS0o0480zYswd6etobX1yxxgDMrBeYDmyusvp8M7vfzDaY2Z8lEJtIJjSaERM3c6be9nnMxEmTuMXd3vSm9sTRioY7ADObDPwI+KS7v1CxehvwOnc/B/gm8OMa+7jSzAbMbGBwcLDZmEVSpdGMmLiZM/W2z2MmTprELe723HPtiaMVDXUAZtZF+PD/vrvfWrne3V9w9/3R/fVAl5mdVGW7le7e5+59PWn7LiTSpEYzYuJmztTbPo+ZOGkSt7jbCSe0J45WNJIFZMB3gJ3u/vUa25wcbYeZzYz2+2ySgYqkVaMZMXEzZ+ptn8dMnDSJW9zt4RSOmjaSBTQX+CDwoJmVvlx+HjgdwN2vB5YAf21mQ8BLwGXeqSJDImOs0YyYWtsBrFt3ZCZPaft162D16nCdf+nS+K+blGp1cG6/Pdu1gFrJopoyJczyNWcOPPro6PMDPPFE+gaAQcXgRDoq7Zk+o8XZ1RXmwT14MJu1gJJu26eegte9rvb6pGoBaUpIkXEiK5k+tergHDiQ3QykpNv29a8ffb1qAYnICFnJ9GmkDk7WMpCSbtvDh0dfr1pAIjJCVjJ9GqmDk7UMpKTb9qijRl+fyVpAItI+Wcn0qVUHZ9Kk7GYgJd22jz46+vo01gLSILDkVtJ1dIrFkLGzalV4vHRpKBlQb5/1poxMy5SSlXGUsoA6HVcrSu9ZeZZVI+9ZLb/8JSxcOHLZhAmhVtDJJ7ceL2hKSJGWJZ0BUiyGD8SNG8N9CPuZNy98SGbtgzEvkjwPHnts9IFgZQGJpETSGSAbNoR/DCp9+EO439+frcyYvEnyPHjjG0dfrywgkZRIOgNk+3Y4dOjI5YcOZSszJm+SPA/+9KfR1ysLSCQlks4AmT4duruPXN7dna3MmLxJ8jyYUOfTVFlAIimRdAbIokWhJED5deNCISzLUmZM3iR5HuzaNfp6ZQGV0SCwdFrS2TXlGSUAS5a0llHSTq1mQHVqJrJ2SOo8KBbhm9+ET31q5PKzz4ZNm5KbEUxZQCLStFYzX9JSnyhNisWQ/rlxY/X1Sc4GpiwgEWlaq5kvaalPlCYbNsBdd9Ven8bZwEAdgEjutJr5kpb6RGmyffvok8KncTYwUAcgkjutZr6kpT5RmkyfHgaRa0njbGCgDkAkd1rNfElLfaI0WbQI/vzPa69P42xg0NiMYCISU9qzZD7+8VCbxixkKy1a1Hi8Yz0TWRYUCqHkx+c/D9/4BgwNheUTJoSJYtI4GxgoC0gkcWnOkqkW28yZYd2WLemLNyuKRbjwQrjzziPXTZkSsoDqlYtulLKARFIszVky1WLr7w+3NMabFRs2wN13V1+3bx+sWDG28TRKHYBIwtKcJVMttkOHjqxjlJZ4s2L79tEnhe/vH7tY4lAHIJKwNGfJVIutu/vIOkZpiTcrpk+Hrq7a6+fMGbtY4lAHIJKwNGfJVIttzpxwS2O8WbFoEVxwQfV1U6bA8uVjG0+j6mYBmdk04F+B1wAOrHT3b1RsY8A3gIuBg8Dl7r4t+XBF0i/NWTK1YoN0xpsVhQLccQesWQPXXQePPALHHAPvex988YvJDQAnrW4WkJmdApzi7tvM7FhgK/Aud3+4bJuLgY8TOoBZwDfcfdZo+1UWkGRVu6aSvOUW+I//gNe+FpYta28huWanryw9N80prnG041ja3T5JZgHh7rFuwE+ACyuWfRt4X9njXYROo+Z+ZsyY4SJZMzTkvnCh++TJ7mbh58KFYXmz+1uwwL1QcA85OOE2YUJY3ux+475modDY6yV9/J3UjmMZi/YBBjzm53atW6wxADPrBaYDmytWnQr8ruzx76NlIuPKWEwlCWF2qXZNJ9nK9JVpTnGNqx3HkrX2abgDMLPJwI+AT7r7C828mJldaWYDZjYwODjYzC5EOmqsppKE9k0n2cr0lWlOcY2rHceStfZpqAMwsy7Ch//33f3WKps8DUwre3xatGwEd1/p7n3u3teT1v+NFhnFWE0lCe2bTrKV6SvTnOIaVzuOJWvtU7cDiDJ8vgPsdPev19hsDfAhC2YD+9x9d4JxiqTCWEwlCaGGTLumk2xl+so0p7jG1Y5jyVr7NFIMbi7wQeBBMyt9kfk8cDqAu18PrCdkAD1GSAO9IvlQJc/SknkyWhrlunXx4ysVEVu3Dn74w+EsoPe+t31ZQIVCiP8LX4DvfhcOHw6zWS1bBl/9aoj/ootCXOXHUzrGV78aZsyAU09tb5zt1q503Y99LPxX8FNPwemnw1VXJRNvO6gYnKRemourZSG+SqMVLoPwV2tXV+gYDh4cLhjnHma9Kg0eFwowb17oKNJ4nGOtWAwd58aNIwfYJ0yA+fOTaycVg5NcSXtmRdrjqzRa4TII8e/dGzqz8oJxd9/dXOZQXnQio6tV6gAk9dKeWZH2+CrVK1xWzaFD1Z/TrkylLOpERler1AFI6qU9syLt8VWqV7ismu7u6s9pV6ZSFnUio6tV6gAk9dKeWZH2+CqNVrgMQuc1dWr4WV4w7oILmsscyotOZHS1SoPAkgmlLKC0FitLe3yVDh+ungW0a1eIv5QFVC3TafXqcH/JkuxmALVLqcZSOzO6khwEVgcgkjPVslWU0ZMdygISkaa1UgtIxhd1ACI500otIBlf1AGI5EwrtYBkfFEHIJIzrdQCkvGlkVpAItKAtNQrqqdQCJkql18eBoJ7euCSS+BVr4IvfSmsnzGjevxZOUZpjDoAkQRkqR7Q4cOhkNveveHxH/4AO3aM3GbSJJg9e2T8WTpGaYwuAYkkIEv1gFasGP7wr+XAgSPjz9IxSmPUAYgkIEv1gDZtamy7yvizdIzSGHUAIgnIUj2guXMb264y/iwdozRGHYBIArJUD2j58lDrZzSl6/vl8WfpGKUxGgQWSUC7Zpdqh6OOgmeeCWMB/f1hsPe88+DBB2HnTtizJxR+W778yFTRrByjNEa1gEREGT4ZolpAIpIoZfjkkzoAEVGGT06pAxARZfjklDoAEVGGT07VzQIys+8Ci4E97n5WlfXzgZ8Av40W3eru1yYZpIi0lzJ88qmRNND/DXwL+NdRtvm1uy9OJCIRGXMq8pZPdTsAd7/LzHrbH4qIdIJSQPMrqTGA883sfjPbYGZ/ltA+RWQMKAU0v5LoALYBr3P3c4BvAj+utaGZXWlmA2Y2MDg4mMBLi0irlAKaXy13AO7+grvvj+6vB7rM7KQa26509z537+vp6Wn1pUUkAUoBza+WOwAzO9nMLLo/M9rns63uV0TGhlJA86uRNNAfAPOBk8zs98AXgC4Ad78eWAL8tZkNAS8Bl3mnCgyJSGxKAc0vFYMTEckQFYMTEZGWqQMQEckpdQAiIjmlDkBEJKc0JaRIzqjuj5SoAxDJEdX9kXK6BCSSI6r7I+XUAYjkiOr+SDl1ACI5oro/Uk4dgEiOqO6PlNMgsEiOqO6PlFMHIJIzhQIsXhxukm+6BCQiklPqAEREckodgIhITqkDEBHJKXUAIiI51bEZwczsRWBXR148GScBf+x0EC1Q/J2V5fizHDtkP/43uvuxSeyok2mgu5Ka1qwTzGxA8XeO4u+cLMcO4yP+pPalS0AiIjmlDkBEJKc62QGs7OBrJ0Hxd5bi75wsxw6K///r2CCwiIh0li4BiYjkVKIdgJl918z2mNmOsmXnmNm/m9mDZrbWzI6Llvea2Utmdl90u77sOTOi7R8zs/9pZpZknK3GHq07O1r3ULS+u1Oxx43fzN5f1u73mdmfzOzcDMXfZWbfi5bvNLNryp7zDjPbFcX/ubGIvYn4jzKzG6Pl95vZ/LLndKr9p5nZnWb2cHROXx0tP8HM7jCzR6OfU6PlFsX3mJk9YGbnle3rw9H2j5rZh1MY+3+O3peXzezTFfsa8/OnifjfH7X5g2bWb2bnNB2/uyd2A/4cOA/YUbbsXmBedP8jwJej+73l21XsZwswGzBgA7AoyTgTiH0i8ABwTvT4RKDQqdjjxl/xvDcDj3ey7Zto/78Ebo7uHwM8GZ1PBeBx4EzgKOB+4E0pjP9jwI3R/VcDW4EJHW7/U4DzovvHAr8B3gT8M/C5aPnngK9F9y+O4rMo3s3R8hOAJ6KfU6P7U1MW+6uBtwBfAT5dtp+OnD9NxD+n1KbAorK2jx1/Ow6mt+KXYB/DYw3TgIerbVfRGI+UPX4f8O0x+iVoNPaLgZvSFHuc+Cue81XgK1mKP4prLaEjPjH6hTkBOB+4rez51wDXpDD+/wV8sGy7XwAzO93+FcfyE+BCwj9rnlJ2fuyK7n8beF/Z9rui9SNirtwuDbGXbfdFRnYAHT1/4sYfLZ8KPN1s/GMxBvAQ8M7o/lLCL0LJGWa23cw2mtlbo2WnAr8v2+b30bJOqBX7GwA3s9vMbJuZfTZanqbYYfS2L1kG/CC6n5X4VwMHgN3AU8D/cPfnCLH+ruz5aY3/fuBSM5toZmcAM6J1qWh/M+sFpgObgde4++5o1TPAa6L7tdq6o+9Bg7HX0vHzp4n4P0r4JgZNxD8WHcBHgKuu4sXYAAACyElEQVTMbCvh683haPlu4HR3nw78LfB/rOwae0rUin0icAHw/ujnu81sYWdCHFWt+AEws1nAQXffUe3JKVAr/plAEXgtcAbwd2Z2ZmdCHFWt+L9L+OUcAK4D+gnH03FmNhn4EfBJd3+hfJ2HPytTmzaY5dghfvxm9jZCB/Dfmn3NtpeCcPdHgIsAzOwNwCXR8peBl6P7W83sccJf1k8Dp5Xt4rRo2ZirFTvhl/cud/9jtG494frvTaQkdhg1/pLLGP7rH1LU9jBq/H8J/MzdXwH2mNkmoI/w10/5t5xUxu/uQ8CnStuZWT/hMtZeOtj+ZtZF+AD6vrvfGi3+g5md4u67zewUYE+0/Gmqt/XTwPyK5b9qZ9wQO/Zaah1T28WN38zOBm4gjBE9Gy2OHX/bvwGY2aujnxOA5cD10eMeMytE988EXg88EX3lecHMZkcZEB8iXBMbc7ViB24D3mxmx5jZRGAe4fpuamKHUeMvLXsvcHNpWYbifwpYEK2bRBiEfIQw6Pp6MzvDzI4idHBrxjruklHO/WOiuDGzC4Ehd+/o+RO93neAne7+9bJVa4BSJs+Hy+JZA3zIgtnAvij+24CLzGxqlLVyUbQsTbHX0pHzJ278ZnY6cCthHOk3LcWf8ODFDwiXdl4h/JX8UeBqwl83vwH+ieFBsfcQrpHeB2wD/kvZfvqAHYQR7W+VntPmgZeGY4+2/0AU/w7gnzsZe5PxzwfuqbKf1McPTAZWRe3/MPCZsv1cHG3/OPDfxyL2JuLvJQzw7QR+DrwuBe1/AeESwwPR7+R9UVueSBikfjSK9YRoeyMMZj8OPAj0le3rI8Bj0e2KFMZ+cvQevQA8H90/rlPnTxPx30D4tljadqDZ81//CSwiklP6T2ARkZxSByAiklPqAEREckodgIhITqkDEBHJKXUAIiI5pQ5ARCSn1AGIiOTU/wOqDlhYMt625AAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig3 = plt.subplots(1,1)\n",
"plt.xlim([mdates.date2num(startt.datetime),mdates.date2num(endt.datetime)])\n",
"plt.plot_date(times1,magnitudes1, color = \"blue\", marker='.', markersize = 10) \n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Clearly, Oklahoma has much more seismic activity than North Dakota. Also notable, however, is how much the amount of earthquakes has increased over time. This can better be seen in the graph showing seismicity rates:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAE2hJREFUeJzt3X2wZHV95/H3JwwmEXQB5zo7C0wGrNEtzCYD3iVURV0SVgPsRjSpRUjKkMhmNMEq3TW7hWYruk9VxvUhZW2CNYaJWGUQEiRihbhOWEo2m2C8g+M4PMnADnFmx5kbTMQECx347h997tJc7p3b93b39NzfvF9VXX36dx76e363+3NP//rhpKqQJLXr+yZdgCRpvAx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuPWTLoAgLVr19bGjRsnXYYkrSo7duz466qaWmq5YyLoN27cyMzMzKTLkKRVJcmjgyzn0I0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXumPhmrCS1KHlmumpydSx5RJ/kzCR3Jrkvyb1J3t61n5Zke5KHuutTu/Yk+UiSPUl2JTlv3DshSVrcIEM3h4F3VtU5wAXANUnOAa4F7qiqTcAd3W2AS4BN3WULcN3Iq5YkDWzJoK+qA1V1Tzf9beB+4HTgMuCGbrEbgNd305cBn6ieu4FTkqwfeeWSpIEs683YJBuBc4EvAuuq6kA36xvAum76dODrfavt69okSRMwcNAnORm4BXhHVT3eP6+qCljWWw1JtiSZSTIzOzu7nFUlScswUNAnOZFeyH+yqj7dNR+cG5Lprg917fuBM/tWP6Nre5aq2lpV01U1PTW15O/mS5JWaJBP3QS4Hri/qj7UN+s24Kpu+irgM33tv9B9+uYC4Ft9QzySpKNskM/R/zjwJuCrSXZ2be8G3gfcnORq4FHg8m7e7cClwB7gCeCXRlqxJGlZlgz6qvozIIvMvmiB5Qu4Zsi6JEkj4k8gSFLjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaN8ipBLclOZRkd1/bTUl2dpe9c2eeSrIxyXf65n10nMVLkpY2yKkEPw78d+ATcw1V9ca56SQfBL7Vt/zDVbV5VAVKkoYzyKkE70qycaF53YnDLwd+crRlSZJGZdgx+lcBB6vqob62s5J8OckXkrxqyO1LkoY0yNDNkVwJ3Nh3+wCwoaoeS/IK4I+SvLyqHp+/YpItwBaADRs2DFmGJGkxKz6iT7IG+Bngprm2qnqyqh7rpncADwMvXWj9qtpaVdNVNT01NbXSMiRJSxhm6OafAw9U1b65hiRTSU7ops8GNgGPDFeiJGkYg3y88kbgL4CXJdmX5Opu1hU8e9gG4NXAru7jln8IvLWqvjnKgiVJyzPIp26uXKT9FxdouwW4ZfiyJEmj4jdjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXGDnEpwW5JDSXb3tb03yf4kO7vLpX3z3pVkT5IHk/zUuAqXJA1mkCP6jwMXL9D+4ara3F1uB0hyDr1zyb68W+d35k4WLkmajCWDvqruAgY9wfdlwKeq6smq+j/AHuD8IeqTJA1pmDH6tyXZ1Q3tnNq1nQ58vW+ZfV3bcyTZkmQmyczs7OwQZUiSjmSlQX8d8BJgM3AA+OByN1BVW6tquqqmp6amVliGJGkpKwr6qjpYVU9V1dPAx3hmeGY/cGbfomd0bZKkCVlR0CdZ33fzDcDcJ3JuA65I8v1JzgI2AX85XImSpGGsWWqBJDcCFwJrk+wD3gNcmGQzUMBe4C0AVXVvkpuB+4DDwDVV9dR4SpckDSJVNekamJ6erpmZmUmXIUkjlTwzPY6oTbKjqqaXWs5vxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGrdk0CfZluRQkt19bf8tyQNJdiW5NckpXfvGJN9JsrO7fHScxUuSljbIEf3HgYvntW0HfriqfgT4GvCuvnkPV9Xm7vLW0ZQpSVqpJYO+qu4Cvjmv7fNVdbi7eTdwxhhqkySNwCjG6N8M/Enf7bOSfDnJF5K8agTblyQNYc0wKyf5deAw8Mmu6QCwoaoeS/IK4I+SvLyqHl9g3S3AFoANGzYMU4Yk6QhWfESf5BeBfwn8fFXv/OZV9WRVPdZN7wAeBl660PpVtbWqpqtqempqaqVlSJKWsKKgT3Ix8O+B11XVE33tU0lO6KbPBjYBj4yiUEnSyiw5dJPkRuBCYG2SfcB76H3K5vuB7UkA7u4+YfNq4D8l+R7wNPDWqvrmghuWJB0VSwZ9VV25QPP1iyx7C3DLsEVJkkbHb8ZKUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekho3UNAn2ZbkUJLdfW2nJdme5KHu+tSuPUk+kmRPkl1JzhtX8ZKkpQ16RP9x4OJ5bdcCd1TVJuCO7jbAJfTOFbsJ2AJcN3yZkqSVGijoq+ouYP65Xy8DbuimbwBe39f+ieq5GzglyfpRFCtJWr5hxujXVdWBbvobwLpu+nTg633L7evaJEkTMJI3Y6uqgFrOOkm2JJlJMjM7OzuKMiRJCxgm6A/ODcl014e69v3AmX3LndG1PUtVba2q6aqanpqaGqIMSdKRDBP0twFXddNXAZ/pa/+F7tM3FwDf6hvikSQdZWsGWSjJjcCFwNok+4D3AO8Dbk5yNfAocHm3+O3ApcAe4Angl0ZcsyRpGQYK+qq6cpFZFy2wbAHXDFOUJGl0/GasJDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxA514ZCFJXgbc1Nd0NvAbwCnALwNzZ/x+d1XdvuIKJUlDWXHQV9WDwGaAJCfQOwH4rfROHfjhqvrASCqUJA1lxUE/z0XAw1X1aJIRbVKSVp9jMQJHNUZ/BXBj3+23JdmVZFuSU0d0H5KkFRg66JM8D3gd8Add03XAS+gN6xwAPrjIeluSzCSZmZ2dXWgRSdIIjOKI/hLgnqo6CFBVB6vqqap6GvgYcP5CK1XV1qqarqrpqampEZQhSVrIKIL+SvqGbZKs75v3BmD3CO5DkrRCQ70Zm+Qk4DXAW/qa359kM1DA3nnzJElH2VBBX1V/D7xoXtubhqpIkjRSfjNWkhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGjfUGaYAkuwFvg08BRyuqukkpwE3ARvpnU7w8qr6m2HvS5K0fKM6ov+JqtpcVdPd7WuBO6pqE3BHd1uSNAHjGrq5DLihm74BeP2Y7keStIRRBH0Bn0+yI8mWrm1dVR3opr8BrJu/UpItSWaSzMzOzo6gDEnSQoYeowdeWVX7k7wY2J7kgf6ZVVVJav5KVbUV2AowPT39nPmSpNEY+oi+qvZ314eAW4HzgYNJ1gN014eGvR9pTvLMRdLShgr6JCclecHcNPBaYDdwG3BVt9hVwGeGuR9J0soNO3SzDrg1vUOrNcDvV9XnknwJuDnJ1cCjwOVD3o8kaYWGCvqqegT40QXaHwMuGmbbkqTR8JuxktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGrTjok5yZ5M4k9yW5N8nbu/b3JtmfZGd3uXR05UqSlmuYM0wdBt5ZVfd0543dkWR7N+/DVfWB4cuTJA1rxUFfVQeAA930t5PcD5w+qsIkSaMxkjH6JBuBc4Evdk1vS7IrybYkp47iPiRJKzN00Cc5GbgFeEdVPQ5cB7wE2EzviP+Di6y3JclMkpnZ2dlhy5AkLWKooE9yIr2Q/2RVfRqgqg5W1VNV9TTwMeD8hdatqq1VNV1V01NTU8OUIUk6gmE+dRPgeuD+qvpQX/v6vsXeAOxeeXmSpGEN86mbHwfeBHw1yc6u7d3AlUk2AwXsBd4yVIWSpKEM86mbPwOywKzbV16OJGnU/GasJDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNG+YLU5IakL5vw1RNrg6Nj0f0ktQ4g16SGufQjaTj2vEwdOURvSQ1ziN6NetIR2rHw1Gcjo4s9NOOxxiP6CWpcR7RS1q2+UexrbwqavWVnkGvVa3VwJkU+7NNYxu6SXJxkgeT7Ely7bjuR21Knn051rY3bsdKrYPWcazUe7Sstv0dS9AnOQH4beAS4Bx6pxc8Zxz3JfU7Fp6A8/+pHAs1HQ+O1M/H+99gXEf05wN7quqRqvou8CngsjHdl1aRlT7hWnmijmI/WumLY11L/6THNUZ/OvD1vtv7gB8b030d146VMdXV/CbWKGpfSRCM+m83aA2rYR9X8+PpWDSxN2OTbAG2dDf/LsmDk6plQGuBv550EUs5CkceS/bDoDUci0dJA9Y0lsfCYvd9pJpGEb5DWLAfjoV6R13DEdYb+LEwpsf7Dw2y0LiCfj9wZt/tM7q2/6+qtgJbx3T/I5dkpqqmJ13HpNkP9sEc+2H19MG4xui/BGxKclaS5wFXALeN6b4kSUcwliP6qjqc5G3A/wBOALZV1b3juC9J0pGNbYy+qm4Hbh/X9idg1QwzjZn9YB/MsR9WSR+kfEtbkprmj5pJUuOO66BPsi3JoSS7+9p+NMlfJPlqks8meWHXvjHJd5Ls7C4f7Vvnym75XUk+l2TtJPZnJZbZBz/ft/87kzydZHOS5yf54yQPJLk3yfsmt0crs8x+ODHJDV37/Une1bfO3q59Z5KZSezLSi2zD56X5Pe69q8kubBvnTd2z4V7k/zmBHZlKEnOTHJnkvu6fXh7135aku1JHuquT+3a/3HXR08m+bW+7fxAkr/s+ufeJP9xUvtEVR23F+DVwHnA7r62LwH/rJt+M/Cfu+mN/cv1Lb8GOASs7W6/H3jvpPdtHH0wb71/AjzcTT8f+Ilu+nnA/wIumfS+jfGx8HPAp/r2fS+wsbu9d+6xsNouy+yDa4Df66ZfDOygd+D4IuCvgKlu3g3ARZPet2X2w3rgvG76BcDX6P2Uy/uBa7v2a4Hf7Nv/fwr8V+DX+rYT4ORu+kTgi8AFk9in4/qIvqruAr45r/mlwF3d9HbgZ5fYTLrLSUkCvBD4v6Osc5yG6IMr6f20BVX1RFXd2U1/F7iH3ncnVo1l9kPR+3uvAX4Q+C7w+NGoc5yW2QfnAP+zW+8Q8LfANHA28FBVzXbL/SlLP4eOKVV1oKru6aa/DdxP79v+l9H7x0V3/fpumUNV9SXge/O2U1X1d93NE7vLRN4UPa6DfhH38szv8vwrnv3Fr7OSfDnJF5K8CqCqvgf8CvBVegF/DnD9Uax3HI7UB3PeCNw4vzHJKcBPA3eMrbqjZ7F++EPg74ED9I5eP1BVcwFZwOeT7Oi+/b3aLdYHXwFel2RNkrOAV3Tz9gAv64Y619ALw4UeP6tCko3AufSOxtdV1YFu1jeAdQOsf0KSnfRe9W+vqi+OqdQjMuif683ArybZQe9l23e79gPAhqo6F/i3wO8neWGSE+kF/bnAPwJ2Ae967mZXlcX6AIAkPwY8UVW757WvoRf+H6mqR45WsWO0WD+cDzxF7+99FvDOJGd3815ZVefR++XWa5K8+ijXPGqL9cE2er9hNQP8FvDnwFNV9Tf0ng830RvC20uvr1adJCcDtwDvqKpnvWKr3njMkkfnVfVUVW2m9wr3/CQ/PJZil+CJR+apqgeA1wIkeSnwL7r2J4Enu+kdSR6m97I2XdvD3To30xu/W7UW64M+V7DA0Ty9zxQ/VFW/Nd4Kj44j9MPPAZ/rXs0dSvK/6Q1bPFJV+7t1DyW5ld4/hbues/FV4gjPh8PAv5lbLsmf0xvLpqo+C3y2a9/CKgz67gDuFuCTVfXprvlgkvVVdSDJenpH6QOpqr9NcidwMbB7qeVHzSP6eZK8uLv+PuA/AB/tbk+l9zv7dEdvm4BH6P2GzzlJprpNvIbemN6qtVgf9LVdTjc+39f+X4B/ALzj6FU6Xkfoh78CfrKbdxJwAfBAkpOSvKCv/bVM4Ek9Skd4Pjy/20eSvAY4XFX3zVvnVOBXgd+dQOkr1r3Xdj1wf1V9qG/WbcBV3fRVwGeW2M5UN5RJkh+klw0PjL7iAUz6He5JXugdlR6g9ybKPuBq4O30jky+BryPZ75U9rP0xit30nuz8af7tvNWeuG+i96RzIsmvW/j6INu+QuBu+dt4wx6L2Pv7/pnJ/CvJ71vY3wsnAz8Qfd4uA/4d1372fTGrr/Szfv1Se/XGPtgI/Bg9zf/U+CH5m3nvu5yxaT3awX98Mru8byr7/F8Kb1PFN0BPNTt82nd8v+w66/H6b0pvY/ehzJ+BPhyt53dwG9Map/8ZqwkNc6hG0lqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1Lj/h95+QfD26gg7AAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig4, axes = plt.subplots(1,1)\n",
"axes.hist(times1, bins=70, color=\"blue\")\n",
"plt.xlim([mdates.date2num(startt.datetime),mdates.date2num(endt.datetime)])\n",
"axes.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Much like North Dakota, there has been a significant rise in seismicity rates in Oklahoma since the advent and increase of fracking."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Texas\n",
"\n",
"Finally, I will run the same analysis on an area of fracking in Texas."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"lon2 = -98.616111\n",
"lat2 = 27.879167"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"cat2 = client.get_events(starttime=startt, endtime=endt, latitude=lat2, longitude=lon2, maxradius=maxrad, minmagnitude=minmag, catalog=\"ISC\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"32 Event(s) in Catalog:\n",
"2015-01-31T03:30:02.570000Z | +29.031, -97.969 | 2.8 mb_Lg\n",
"2015-01-31T02:17:02.280000Z | +28.846, -98.080 | 3.1 mb_Lg\n",
"...\n",
"1984-03-03T01:03:30.040000Z | +29.096, -98.270 | 3.9 MbLg\n",
"1983-07-23T15:24:35.360000Z | +28.444, -98.023 | 3.4 MbLg\n",
"To see all events call 'print(CatalogObject.__str__(print_all=True))'\n"
]
}
],
"source": [
"print(cat2)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"times2 = []\n",
"magnitudes2 = []\n",
"for quake in cat2:\n",
" times2.append(mdates.date2num(quake.origins[0].time.datetime))\n",
" magnitudes2.append(quake.magnitudes[0].mag)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFYhJREFUeJzt3X+QXXd53/H3o5UWhRUkwl6QItkRjKJ20sRIeOslcmhcZ7ARbM10ILUTlJhCxjNtMyEtlOLW06au0ymZNkNbOkM8JhkTpyGpwzQik+3GraEhVlh3hdbGYBtk6mJUqRa2wNkl9lry0z/uWXt3rZV274899+z3/ZrZ2bPnnnvOc869u5+95zzfeyMzkSSVZ0PdBUiS6mEASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgq1sa4NX3zxxblr1666Ni9JjXTkyJFvZ+ZwN9ZVWwDs2rWLqampujYvSY0UEf+nW+vyFJAkFcoAkKRCGQCSVCgDQJIKZQBIUqFq6wKSpH5z9oWzjB8b5+iJo+zbvo8Duw8wsGGg7rJ6xgCQJFp//K+961omj08yOzfL0OAQoztGmTg4sW5DwFNAkgSMHxtn8vgkM3MzJMnM3AyTxycZPzZed2k9YwBIEnD0xFFm52YXzZudm2X65HRNFfWeASBJwL7t+xgaHFo0b2hwiL3b9tZUUe8ZAJIEHNh9gNEdo2wZ3EIQbBncwuiOUQ7sPlB3aT3jRWBJAgY2DDBxcILxY+NMn5xm77a9dgFJUikGNgwwtmeMsT1jdZeyJjwFJEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqFWHAARMRARRyPij85x23sj4lRETFdfv9DdMiVJ3baaD4T5APAw8Oplbv+9zPzFzkuSJK2FFb0CiIidwDuAO3pbjiRpraz0FNDHgA8DL5xnmXdFxIMRcXdEXNJ5aZKkXrpgAETEGPBkZh45z2KfBXZl5mXAPcCdy6zrpoiYioipU6dOtVWwJKk7VvIK4Erguoh4HPg0cHVE3LVwgcx8KjOfq368A7j8XCvKzNszcyQzR4aHhzsoW5LUqQsGQGbenJk7M3MXcANwb2YeXLhMRGxf8ON1tC4WS5L62Gq6gBaJiFuBqcw8BPxSRFwHnAGeBt7bnfIkSb0SmVnLhkdGRnJqaqqWbUtSU0XEkcwc6ca6HAksSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkq1Ma6C5C0MmdfOMv4sXGOnjjKvu37OLD7AAMbBuouSw1mAEgNcPaFs1x717VMHp9kdm6WocEhRneMMnFwwhBQ2zwFJDXA+LFxJo9PMjM3Q5LMzM0weXyS8WPjdZemBjMApAY4euIos3Ozi+bNzs0yfXK6poq0HhgAUgPs276PocGhRfOGBofYu21vTRVpPTAApAY4sPsAoztG2TK4hSDYMriF0R2jHNh9oO7S1GBeBJYaYGDDABMHJxg/Ns70yWn2bttrF5A6tuIAiIgBYAo4npljS257BfAp4HLgKeD6zHy8i3VKxRvYMMDYnjHG9oxdeGGdk620i63mFcAHgIeBV5/jtvcDpzNzd0TcAHwUuL4L9UlSV9hK+3IrugYQETuBdwB3LLPIO4E7q+m7gZ+KiOi8PEnqDltpX26lF4E/BnwYeGGZ23cATwBk5hngu8BFSxeKiJsiYioipk6dOtVGuZLUHltpX+6CARARY8CTmXmk041l5u2ZOZKZI8PDw52uTpJWzFbal1vJK4Argesi4nHg08DVEXHXkmWOA5cARMRG4PtpXQyWpL5gK+3LXfAicGbeDNwMEBFXAR/KzINLFjsE3Aj8OfBu4N7MzO6WKknts5X25doeBxARtwJTmXkI+CTw2xFxDHgauKFL9UlS19hKu9iqAiAzPw98vpr+5wvmPwv8dDcLk9ZCqX3h59vvph6TptZdJ0cCq1il9oWfb7+BRh6TUh/LTvleQCpWqX3h59vvph6TptZdNwNAxSq1L/x8+93UY9LUuuvmKSAVa74vfGZu5sV5JfSFX2i/m3hMSn0sO+UrABWr1L7w8+13U49JU+uuW9TVrj8yMpJTU1O1bFuaN985Ulpf+Pn2u6nHpKl1r1ZEHMnMka6sywCQpOboZgB4DUBSURwv8BIDQFIxHC+wmBeBJRXD8QKLGQCSiuF4gcUMAEnF8DMBFjMAJBXD8QKLeRFYUjH8TIDFDABJRfEzAV7iKSBJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKdcEAiIjNEXF/RDwQEV+JiH95jmXeGxGnImK6+vqF3pQrSeqWlXwgzHPA1Zk5ExGbgD+LiPHM/OKS5X4vM3+x+yVK0to4+8JZxo+Nc/TEUfZt37fuPy3sggGQmQnMVD9uqr6yl0VJ0lo7+8JZrr3rWiaPTzI7N8vQ4BCjO0aZODixbkNgRdcAImIgIqaBJ4F7MnPyHIu9KyIejIi7I+KSrlYpST02fmycyeOTzMzNkCQzczNMHp9k/Nh43aX1zIoCIDPPZuZeYCdwRUT86JJFPgvsyszLgHuAO8+1noi4KSKmImLq1KlTndQtSV119MRRZudmF82bnZtl+uR0TRX13qq6gDLzO8DngLctmf9UZj5X/XgHcPky9789M0cyc2R4eLideiWpJ/Zt38fQ4NCieUODQ+zdtreminpvJV1AwxHxA9X09wFvBR5Zssz2BT9eBzzczSIlqdcO7D7A6I5RtgxuIQi2DG5hdMcoB3YfqLu0nllJF9B24M6IGKAVGL+fmX8UEbcCU5l5CPiliLgOOAM8Dby3VwVLUi8MbBhg4uAE48fGmT45zd5te9d9F1C0mnzW3sjISE5NTdWybUlqqog4kpkj3VjXSl4BSOtKv/Z6d6uuft2/pinhOBoAKkq/9np3q65+3b+mKeU4+l5AKkq/9np3q65+3b+mKeU4GgAqSr/2enerrn7dv6Yp5TgaACpKv/Z6d6uuft2/pinlOBoAKkq/9np3q65+3b+mKeU42gaq4sx3d/Rbr3e36urX/Wuafj2O3WwDNQAkqUEcByBJbWint389jwcwACQVoZ3e/vU+HsCLwJKK0E5v/3ofD2AASCpCO7396308gAEgqQjt9Pav9/EABoCkIrTT27/exwPYBiqpGO309vfbeADHAUhSoRwHIEl9pKljBQwASepAk8cKeBFYkjrQ5LECBoAkdaDJYwUMAEnqQJPHChgAktSBJo8V8CKwJHVgYMMAEwcn+mqswEoZAJLUoYENA4ztGWNsz1jdpayKASBJXdDEsQAGgCR1qKljAbwILEkdaupYAANAkjrU1LEABoAkdaipYwEMAEnqUFPHAngRWJI61NSxABcMgIjYDPwp8Ipq+bsz818sWeYVwKeAy4GngOsz8/GuVytJfaqJYwFW8grgOeDqzJyJiE3An0XEeGZ+ccEy7wdOZ+buiLgB+ChwfQ/qlXqiiT3cWr2lj/M1b7iGP/nGnyx63IFingsXDIBsfWTYTPXjpupr6ceIvRP4lWr6buDjERFZ18eNSavQ1B5urc7LHudNQ2wa2MTc2Tm+9/z3GBoc4oofvAKA+//v/UU8F1Z0ETgiBiJiGngSuCczJ5cssgN4AiAzzwDfBS7qZqFSrzS1h1ur87LH+fkZTj97mtnnZ1983A9/6zCHv3W4mOfCigIgM89m5l5gJ3BFRPxoOxuLiJsiYioipk6dOtXOKqSua2oPt1bnXI/zUs+eeZZnzzy7aN56fi6sqg00M78DfA5425KbjgOXAETERuD7aV0MXnr/2zNzJDNHhoeH26tY6rKm9nBrdc71OC+1eeNmNm/cvGjeen4uXDAAImI4In6gmv4+4K3AI0sWOwTcWE2/G7jX8/9qiqb2cGt1lj7OQ5uG2Lp5K0Obhl583Pfv3M/+nfuLeS7Ehf5OR8RlwJ3AAK3A+P3MvDUibgWmMvNQ1Sr628A+4Gnghsz8xvnWOzIyklNTU93YB6lj890hTerh1uotfZznu4AWPu5AXz8XIuJIZo50ZV11/aNuAEjS6nUzAHwrCEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCuUHwkh9zLep7sxaHr+5M3Pc9oXbuO+b93HlpVdyy1tuYXDjYE+21S0GgNSnfJvqzqzl8Zs7M8e2f7eN08+eBuDex+/l4/d/nJMfPNnXIeApIKlP+TbVnVnL43fbF2578Y//vNPPnua2L9zW9W11kwEg9Snfproza3n87vvmfeecf/iJw13fVjcZAFKf8m2qO7OWx+/KS6885/z9l+zv+ra6yQCQ+pRvU92ZtTx+t7zlFrZu3rpo3tbNW7nlLbd0fVvd5LuBSn3Mt6nuzFoev/kuoMNPHGb/Jft71gXk20FLUqG6GQC2gUoqWrtjBdbDGA0DQFKx2h0rsF7GaHgRWFKx2h0rsF7GaBgAkorV7liB9TJGwwCQVKx2xwqslzEaBoCkYrU7VmC9jNGwDVRS0dodK1DXGA3HAUhSoRwHIKkW66H3faH1tj+rZQBIWpH10vs+b73tTzu8CCxpRdZL7/u89bY/7TAAJK3Ieul9n7fe9qcdBoCkFVkvve/z1tv+tMMAkLQi66X3fd5625922AYqacXW2+cTNHF/1nQcQERcAnwKeB2QwO2Z+e+XLHMV8IfA/65mfSYzbz3feg0ASVq9tR4HcAb4YGZ+KSJeBRyJiHsy86tLlvtCZo51oyhJapomjim4YABk5gngRDX9FxHxMLADWBoAklSkpo4pWNVF4IjYBewDJs9x849HxAMRMR4Rf60LtUlSIzR1TMGKAyAitgB/APxyZj6z5OYvAT+UmW8E/iPwX5dZx00RMRURU6dOnWq3ZknqK00dU7CiAIiITbT++P9OZn5m6e2Z+UxmzlTTfwxsioiLz7Hc7Zk5kpkjw8PDHZYuSf2hqWMKLhgAERHAJ4GHM/PXl1lmW7UcEXFFtd6nulmoJPWrpo4pWEkX0JXAzwFfjoj51zP/FLgUIDM/Abwb+HsRcQb4S+CGrGuAgSStsYENA0wcnGjemAIHgklSc/h5AJLUgSb27PeCASCpKE3t2e8F3wxOUlGa2rPfCwaApKI0tWe/FwwASUVpas9+LxgAkorS1J79XvAisKSiNLVnvxcMAEnFGdgwwNieMcb2lP0O9gaApKI4BuAlBoCkYjgGYDEvAksqhmMAFjMAJBXDMQCLGQCSiuEYgMUMAEnFcAzAYl4EllQMxwAsZgBIKopjAF7iKSBJKpQBIEmFMgAkqVAGgCQVygCQpEJFZtaz4Yi/AB6tZePdcTHw7bqL6ID116vJ9Te5dmh+/X8lM1/VjRXV2Qb6aGaO1Lj9jkTElPXXx/rr0+TaYX3U3611eQpIkgplAEhSoeoMgNtr3HY3WH+9rL8+Ta4drP9FtV0EliTVy1NAklSorgZARPxmRDwZEQ8tmPfGiPjziPhyRHw2Il5dzd8VEX8ZEdPV1ycW3OfyavljEfEfIiK6WWentVe3XVbd9pXq9s111b7a+iPiPQuO+3REvBARextU/6aIuLOa/3BE3LzgPm+LiEer+j+yFrW3Uf9gRPxWNf+BiLhqwX3qOv6XRMTnIuKr1XP6A9X810TEPRHx9er71mp+VPUdi4gHI+JNC9Z1Y7X81yPixj6s/a9Wj8tzEfGhJeta8+dPG/W/pzrmX46IwxHxxrbrz8yufQF/A3gT8NCCef8L+Mlq+n3Av6qmdy1cbsl67gfeDAQwDhzoZp1dqH0j8CDwxurni4CBumpfbf1L7vdjwGN1Hvs2jv/PAp+upl8JPF49nwaAx4A3AIPAA8CP9GH9/wD4rWr6tcARYEPNx3878KZq+lXA14AfAX4N+Eg1/yPAR6vpt1f1RVXvZDX/NcA3qu9bq+mtfVb7a4G/Dvwq8KEF66nl+dNG/fvnjylwYMGxX3X9vdiZXUt+Cb7LS9caLgG+eq7llhyMRxb8/DPAb6zRL8FKa387cFc/1b6a+pfc518Dv9qk+qu6PksriC+qfmFeA/w4MLHg/jcDN/dh/f8J+LkFy/0P4Iq6j/+SfflD4K20BmtuX/D8eLSa/g3gZxYs/2h1+6Kaly7XD7UvWO5XWBwAtT5/Vlt/NX8rcLzd+tfiGsBXgHdW0z9N6xdh3usj4mhE/M+IeEs1bwfwrQXLfKuaV4flat8DZERMRMSXIuLD1fx+qh3Of+znXQ/8bjXdlPrvBmaBE8A3gX+bmU/TqvWJBffv1/ofAK6LiI0R8Xrg8uq2vjj+EbEL2AdMAq/LzBPVTSeB11XTyx3rWh+DFda+nNqfP23U/35ar8SgjfrXIgDeB/z9iDhC6+XNXDX/BHBpZu4D/hHwn2PBOfY+sVztG4GfAN5Tff/bEfFT9ZR4XsvVD0BEjALfy8yHznXnPrBc/VcAZ4EfBF4PfDAi3lBPiee1XP2/SeuXcwr4GHCY1v7ULiK2AH8A/HJmPrPwtmz9W9m3bYNNrh1WX39E/E1aAfBP2t1mz98KIjMfAa4BiIg9wDuq+c8Bz1XTRyLiMVr/WR8Hdi5Yxc5q3ppbrnZav7x/mpnfrm77Y1rnf++iT2qH89Y/7wZe+u8f+ujYw3nr/1ngv2Xm88CTEXEfMELrv5+Fr3L6sv7MPAP8w/nlIuIwrdNYp6nx+EfEJlp/gH4nMz9Tzf5/EbE9M09ExHbgyWr+cc59rI8DVy2Z//le1g2rrn05y+1Tz622/oi4DLiD1jWip6rZq66/568AIuK11fcNwC3AJ6qfhyNioJp+A/DDwDeqlzzPRMSbqw6In6d1TmzNLVc7MAH8WES8MiI2Aj9J6/xu39QO561/ft7fAT49P69B9X8TuLq6bYjWRchHaF10/eGIeH1EDNIKuENrXfe88zz3X1nVTUS8FTiTmbU+f6rtfRJ4ODN/fcFNh4D5Tp4bF9RzCPj5aHkz8N2q/gngmojYWnWtXFPN66fal1PL82e19UfEpcBnaF1H+lpH9Xf54sXv0jq18zyt/5LfD3yA1n83XwP+DS9dFHsXrXOk08CXgL+1YD0jwEO0rmh/fP4+Pb7wsuLaq+UPVvU/BPxanbW3Wf9VwBfPsZ6+rx/YAvyX6vh/FfjHC9bz9mr5x4B/tha1t1H/LloX+B4G/jvwQ31w/H+C1imGB6vfyenqWF5E6yL116taX1MtH7QuZj8GfBkYWbCu9wHHqq+/24e1b6seo2eA71TTr67r+dNG/XfQerU4v+xUu89/RwJLUqEcCSxJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkq1P8HThk64qwYzNEAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig5 = plt.subplots(1,1)\n",
"plt.xlim([mdates.date2num(startt.datetime),mdates.date2num(endt.datetime)])\n",
"plt.plot_date(times2,magnitudes2, color = \"green\", marker='.', markersize = 10) \n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There appears to be a slight concentration of earthquakes in the early 2010s."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAADbFJREFUeJzt3XuMXGUdxvHnsVsiV28dEC11IUFMg0pxrSSgIgZSL6CJN/ASEzAbBRJQ1EA06kZN1BhCTExMIyiJKF6AKF7QqtWqXHeh1N7k0lQEq7tECaAGaPn5x3k3DMvMzhmYs9Pf5vtJJnvmnfec/Z23sw/vvHNmcEQIAJDHs4ZdAACgPwQ3ACRDcANAMgQ3ACRDcANAMgQ3ACRDcANAMgQ3ACRDcANAMiNNHHTZsmUxOjraxKEBYFGampq6PyJadfo2Etyjo6OanJxs4tAAsCjZ/mvdviyVAEAyBDcAJENwA0AyBDcAJENwA0Ayta4qsb1T0kOS9kjaHRFjTRYFAOiun8sB3xAR9zdWCQCgFpZKACCZusEdkn5le8r2eJMFAQDmV3ep5ISIuM/2wZLW2d4eERvaO5RAH5ekFStWDLhMABgeT1iSFJ/dO/7n6rVm3BFxX/k5LekaSas79FkbEWMRMdZq1fq4PQDgaegZ3Lb3t33g7LakUyRtbrowAEBndZZKDpF0je3Z/t+NiOsarQoA0FXP4I6IHZJeuQC1AABq4HJAAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZGoHt+0ltm+z/dMmCwIAzK+fGfd5krY1VQgAoJ5awW17uaS3SPpms+UAAHqpO+O+RNInJT3eYC0AgBp6Brftt0qajoipHv3GbU/anpyZmRlYgQBQlycsT3jYZTSuzoz7eEmn2d4p6UpJJ9n+ztxOEbE2IsYiYqzVag24TADArJ7BHREXRcTyiBiVdLqk30bE+xuvDADQEddxA0AyI/10jojfSfpdI5UAAGphxg0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyRDcAJAMwQ0AyfQMbtvPtn2z7dttb7E9sRCFAQA6G6nR5xFJJ0XEw7aXSvqj7V9ExI0N1wYA6KBncEdESHq43F1abtFkUQCA7mqtcdteYnujpGlJ6yLipmbLAgB0Uyu4I2JPRBwjabmk1baPntvH9rjtSduTMzMzg64TAGrzhOUJD7uMxvR1VUlEPCBpvaQ1HR5bGxFjETHWarUGVR8AYI46V5W0bD+3bO8r6WRJ25suDADQWZ2rSg6VdLntJaqC/gcR8dNmywIAdFPnqpJNklYtQC0AgBr45CQAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyBDcAJENwA0AyPYPb9mG219veanuL7fMWojAAQGcjNfrslnRBRNxq+0BJU7bXRcTWhmsDAHTQc8YdEbsi4tay/ZCkbZJe3HRhAIDO+lrjtj0qaZWkm5ooBgDQW+3gtn2ApKsknR8RD3Z4fNz2pO3JmZmZQdYIAM+YJyxPeNhlDESt4La9VFVoXxERV3fqExFrI2IsIsZardYgawQAtKlzVYklXSppW0Rc3HxJAID51JlxHy/pA5JOsr2x3N7ccF0AgC56Xg4YEX+UtDgWhgBgEeCTkwCQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQDMENAMkQ3ACQTM/gtn2Z7WnbmxeiIADA/OrMuL8taU3DdQAAauoZ3BGxQdK/FqAWAEANI4M6kO1xSeOStGLFikEdFuibJ9z1sfhsLGAlT5itae7vn1trnfq6Hauf39dp3zrHHYb2Meo1fvPt22uf2WPP9/v2FgN7czIi1kbEWESMtVqtQR0WADAHV5UAQDIENwAkU+dywO9JukHSUbbvtX1W82UBALrp+eZkRJyxEIUAAOphqQQAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASAZghsAkiG4ASCZWsFte43tv9i+y/aFTRcFAOiuZ3DbXiLp65LeJGmlpDNsr2y6MABAZ3Vm3Ksl3RUROyLiUUlXSnpbs2UBALqpE9wvlvS3tvv3ljYAwBA4IubvYL9T0pqI+FC5/wFJr4mIc+f0G5c0Xu4eJekvgy93oJZJun/YRQwZY1BhHBiDWcMch5dERKtOx5Eafe6TdFjb/eWl7UkiYq2ktbXK2wvYnoyIsWHXMUyMQYVxYAxmZRmHOkslt0g60vbhtveRdLqknzRbFgCgm54z7ojYbftcSb+UtETSZRGxpfHKAAAd1VkqUUT8XNLPG65loaVZ1mkQY1BhHBiDWSnGoeebkwCAvQsfeQeAZBZNcNu+zPa07c1tba+0fYPtP9u+1vZBpX3U9v9sbyy3b7Ttc0bpv8n2dbaXDeN8nq4+x+F9bWOw0fbjto+xvZ/tn9nebnuL7S8N74z61+cYLLV9eWnfZvuitn12lvaNtieHcS7PRJ/jsI/tb5X2222f2LbPe8rfwxbbXx7CqTxttg+zvd721lL/eaX9+bbX2b6z/HxeaX9ZGZ9HbH+87TjPtn1zGZsttieGdU6SpIhYFDdJr5N0rKTNbW23SHp92T5T0ufL9mh7v7b+I5KmJS0r978i6XPDPremxmHOfi+XdHfZ3k/SG8r2PpL+IOlNwz63hp4L75V0Zdt575Q0Wu7vnH0uZLz1OQ7nSPpW2T5Y0pSqid0LJN0jqVUeu1zSG4d9bn2MwaGSji3bB0q6Q9VXd3xF0oWl/UJJX24791dL+qKkj7cdx5IOKNtLJd0k6bhhndeimXFHxAZJ/5rT/FJJG8r2Oknv6HEYl9v+ti3pIEl/H2SdTXsG43CGqq8zUET8NyLWl+1HJd2q6vr9FPocg1D17z0iaV9Jj0p6cCHqbFqf47BS0m/LftOSHpA0JukISXdGxEzp92v1/jvaa0TEroi4tWw/JGmbqk9+v03Vf4RUfr699JmOiFskPTbnOBERD5e7S8ttaG8QLprg7mKLnvhelXfpyR8kOtz2bbZ/b/u1khQRj0n6iKQ/qwrslZIuXcB6mzLfOMx6j6TvzW20/VxJp0r6TWPVLYxuY/AjSf+RtEvVzPKrETEbdiHpV7anyieDF4Nu43C7pNNsj9g+XNKrymN3STqqLC+OqAq4Ts+fvZ7tUUmrVM2WD4mIXeWhf0g6pMb+S2xvVPWqfF1E3NRQqT0t9uA+U9LZtqdUvUx6tLTvkrQiIlZJ+pik79o+yPZSVcG9StKLJG2SdNFTD5tOt3GQJNl+jaT/RsTmOe0jqsL8axGxY6GKbUi3MVgtaY+qf+/DJV1g+4jy2AkRcayqb8Y8x/brFrjmJnQbh8tUfQ/RpKRLJF0vaU9E/FvV38T3VS2Z7VQ1XqnYPkDSVZLOj4gnvaKKav2j5+w5IvZExDGqXn2utn10I8XWUOs67qwiYrukUyTJ9kslvaW0PyLpkbI9ZftuVS8hXdruLvv8QNX6V2rdxqHN6eow21Z1TeudEXFJsxU2b54xeK+k68qrrWnbf1K1RLAjIu4r+07bvkZVyG94ysETmedvYrekj872s329qvVgRcS1kq4t7eNKFtxlQnaVpCsi4urS/E/bh0bELtuHqppF1xIRD9heL2mNpM29+jdhUc+4bR9cfj5L0qclfaPcb7n6nnGV2dWRknao+g6WlbZnv+jlZFVrYql1G4e2tnerrG+3tX9B0nMknb9wlTZnnjG4R9JJ5bH9JR0nabvt/W0f2NZ+iob0RzpI8/xN7FfOU7ZPlrQ7IrbO2ed5ks6W9M0hlP60lPeqLpW0LSIubnvoJ5I+WLY/KOnHPY7TKsuGsr2vqmzYPviKaxr2u76DuqmaMe5S9abCvZLOknSeqlnDHZK+pCc+cPQOVWt9G1W98XZq23E+rCqsN6maZbxg2OfW1DiU/idKunHOMZareum4rYzRRkkfGva5NfRcOEDSD8vzYaukT5T2I1St+95eHvvUsM+r4XEYVfWNnttUvQH5kjnH2Vpupw/7vPocgxPKc3lT23P5zaqulvmNpDvL+T6/9H9hGasHVb1Be6+qixReIem2cpzNkj4zzPPik5MAkMyiXioBgMWI4AaAZAhuAEiG4AaAZAhuAEiG4AaAZAhuAEiG4AaAZP4PjbLUyQxev50AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig6, axes = plt.subplots(1,1)\n",
"axes.hist(times2, bins=70, color=\"green\")\n",
"plt.xlim([mdates.date2num(startt.datetime),mdates.date2num(endt.datetime)])\n",
"axes.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once again, rates of sesmic activity have been higher in the late 2000s and early 2010s."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Conclusions\n",
"\n",
"From this simple study of number and rate of earthquakes, it seems that seismic activity has increased in areas in which fracking has occurred. As a control, I attempted to perform the same analysis on central Iowa, where no fracking has occurred. However, my catalog request returned no earthquakes. I increased the maximum radius, and the results can be seen below:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"lat3 = 42.034722\n",
"lon3 = -93.62"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"cat3 = client.get_events(starttime=startt, endtime=endt, latitude=lat3, longitude=lon3, maxradius=2, minmagnitude=minmag, catalog=\"ISC\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2 Event(s) in Catalog:\n",
"2004-07-16T12:17:28.360000Z | +40.654, -95.522 | 3.3 MN\n",
"1995-02-11T05:54:10.860000Z | +40.460, -94.891 | 3.1 mbLg\n"
]
}
],
"source": [
"print(cat3)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"times3 = []\n",
"magnitudes3 = []\n",
"for quake in cat3:\n",
" times3.append(mdates.date2num(quake.origins[0].time.datetime))\n",
" magnitudes3.append(quake.magnitudes[0].mag)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGbpJREFUeJzt3X+QXeV93/H3xyuB5FUYSXCdyggQTnCJg83Kvmhp02JbRaB1iEKnGLBNEDYTjWNnmpZCMUNmXInQsXHHZDz1xGhiA06wCdAwKEq2G4WsnSG2Vlyh1U8LED+KpdBqbZDprpwNLN/+cZ4dDre70nNXd/fuhc9r5sye85znnPM9l7t89tznXB1FBGZmZjne0eoCzMysfTg0zMwsm0PDzMyyOTTMzCybQ8PMzLI5NMzMLJtDw8zMsjk0zMwsm0PDzMyyzWl1AY047bTTYtmyZa0uw8ysrWzfvv0nEVFpxr7aKjSWLVtGrVZrdRlmZm1F0v9q1r788ZSZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllO25oSJonaZuknZL2Slo/QZ/PStotaVDSY5LeV1p3i6QDkp6UdGmpfXVqOyDpC807JTN7qxsbG2Pz5s3cdtttbN68mbGxsVaX9LaRc8vtKLAyIoYlzQUek9QbEVtLfb4TEd8AkLQG+CqwOoXH1cCvAu8G/kbSe9M2XwdWAQeBxyVtioh9zTktM3urGhsb49JLL2VgYICRkRE6Ozvp7u6mr6+Pjo6OVpf3lnfcK40oDKfFuWmKuj6vlBY7S+t/E7g/IkYj4jngALAiTQci4tmI+Cfg/tTXzOyYent7GRgYYHh4mIhgeHiYgYEBent7W13a20LWmIakDkmDwGFgS0QMTNDn85KeAe4A/n1qPh34canbwdQ2WftEx14nqSapNjQ0lFOumb2F7dixg5GRkTe1jYyMMDg42KKK3l6yQiMixiKiC1gKrJB03gR9vh4RvwTcDPx+swqMiI0RUY2IaqXSlG/Bm1kbW758OZ2dnW9q6+zspKurq0UVvb00dPdURBwB+oHVx+h2P3B5mj8EnFFatzS1TdZuZnZMPT09dHd3s2DBAiSxYMECuru76enpaXVpbwvHHQiXVAFejYgjkuZTDF5/ua7PORHxdFr8dWB8fhPwHUlfpRgIPwfYBgg4R9LZFGFxNfDJJpyPmb3FdXR00NfXR29vL4ODg3R1ddHT0+NB8BmSc/fUEuBeSR0UVyYPRMRmSRuAWkRsAn5X0sXAq8DLwFqAiNgr6QFgH/Aa8PmIGAOQ9LtAH9ABfCsi9jb53MzsLaqjo4PLLruMyy67rNWlvO0oIo7fa5aoVqvhf+XWzKwxkrZHRLUZ+/I3ws3MLJtDw8zMsjk0zMwsm0PDzMyyOTTMzCybQ8PMzLI5NMzMLJtDw8zMsjk0zMwsm0PDzMyyOTTMzCybQ8PMzLI5NMzMLJtDw8zMsjk0zMws23FDQ9I8Sdsk7ZS0V9L6CfrcIGmfpF2SHpV0Vmr/qKTB0vSPki5P6+6R9FxpnR/wa2Y2y+U8uW8UWBkRw5LmAo9J6o2IraU+O4BqRByV9DvAHcBVEdEPdAFIWgwcAP66tN1NEfFQU87EzMym3XGvNKIwnBbnpinq+vRHxNG0uBVYOsGurgB6S/3MzKzNZI1pSOqQNAgcBrZExMAxul8P9E7QfjXw3bq229NHWndKOjmrYjMza5ms0IiIsYjooriCWCHpvIn6SboGqAJfqWtfArwf6Cs13wKcC1wALAZunmSf6yTVJNWGhoZyyjUzs2nS0N1TEXEE6AdW16+TdDFwK7AmIkbrVl8JPBwRr5b29WL66GsUuBtYMckxN0ZENSKqlUqlkXLNzKzJcu6eqkhamObnA6uA/XV9lgN3UQTG4Ql28wnqPppKVx9IEnA5sGcqJ2BmZjMn5+6pJcC9kjooQuaBiNgsaQNQi4hNFB9HLQAeLDKAFyJiDYCkZcAZwPfr9nufpAogYBD47ImfjpmZTSdFxPF7zRLVajVqtVqryzAzayuStkdEtRn78jfCzcwsm0PDzMyyOTTMzCybQ8PMzLI5NMzMLJtDw8zMsjk0zMwsm0PDzMyyOTTMzCybQ8PMzLI5NMzMLJtDw8zMsjk0zMwsm0PDzMyyOTTMzCybQ8PMzLLlPO51nqRtknZK2itp/QR9bpC0T9IuSY9KOqu0bkzSYJo2ldrPljQg6YCkP5N0UvNOy8zMpkPOlcYosDIizge6gNWSLqzrswOoRsQHgIeAO0rrfh4RXWlaU2r/MnBnRPwy8DJw/ZTPwszMZsRxQyMKw2lxbpqirk9/RBxNi1uBpcfap4oHia+kCBiAe4HLG6jbzMxaIGtMQ1KHpEHgMLAlIgaO0f16oLe0PE9STdJWSePBcCpwJCJeS8sHgdMbrN3MzGbYnJxOETEGdElaCDws6byI2FPfT9I1QBX4cKn5rIg4JOk9wN9K2g38LLdASeuAdQBnnnlm7mZmZjYNGrp7KiKOAP3A6vp1ki4GbgXWRMRoaZtD6eezwPeA5cBPgYWSxkNrKXBokmNujIhqRFQrlUoj5ZqZWZPl3D1VSVcYSJoPrAL21/VZDtxFERiHS+2LJJ2c5k8Dfg3YFxFBET5XpK5rgUdO/HTMzGw65VxpLAH6Je0CHqcY09gsaYOk8buhvgIsAB6su7X2V4CapJ0UIfGliNiX1t0M3CDpAMUYxzebdE5mZjZNVPzR3x6q1WrUarVWl2Fm1lYkbY+IajP25W+Em5lZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWXLedzrPEnbJO2UtFfS+gn63CBpn6Rdkh6VdFZq75L0w7TdLklXlba5R9Jz6Ul/g5K6mntqZmbWbHMy+owCKyNiWNJc4DFJvRGxtdRnB1CNiKOSfge4A7gKOApcGxFPS3o3sF1SX0QcSdvdFBEPNfF8zMxsGh33SiMKw2lxbpqirk9/RBxNi1uBpan9qYh4Os3/A3AYqDSpdjMzm2FZYxqSOiQNUvxPf0tEDByj+/VA7wT7WAGcBDxTar49fWx1p6STJzn2Okk1SbWhoaGccs3MbJpkhUZEjEVEF8UVxApJ503UT9I1QBX4Sl37EuBPgE9HxOup+RbgXOACYDFw8yTH3hgR1YioViq+SDEza6WG7p5KYxH9wOr6dZIuBm4F1kTEaKn9FOAvgVvL4yAR8WL66GsUuBtYMbVTMDOzmZJz91RF0sI0Px9YBeyv67McuIsiMA6X2k8CHga+XT/gna4+kCTgcmDPiZ2KmZlNt5y7p5YA90rqoAiZByJis6QNQC0iNlF8HLUAeLDIAF6IiDXAlcBFwKmSrkv7uy4iBoH7JFUAAYPAZ5t4XmZmNg0UEcfvNUtUq9Wo1WqtLsPMrK1I2h4R1Wbsy98INzOzbA4NMzPL5tAwM7NsDg0zM8vm0DAzs2wODTMzy+bQMDOzbA4NMzPL5tAwM7NsDg0zM8vm0DAzs2wODTMzy+bQMDOzbA4NMzPL5tAwM7NsOU/umydpm6SdkvZKWj9Bnxsk7ZO0S9Kjks4qrVsr6ek0rS21f0jSbkkHJH0tPcHPzMxmsZwrjVFgZUScD3QBqyVdWNdnB1CNiA8ADwF3AEhaDHwR6KZ4BvgXJS1K2/wR8NvAOWn6/547bmZms8txQyMKw2lxbpqirk9/RBxNi1uBpWn+UmBLRLwUES8DWyhCZwlwSkRsjeLRgd+meE64mZnNYlljGpI6JA0ChylCYOAY3a8HetP86cCPS+sOprbT03x9u5mZzWJZoRERYxHRRXEFsULSeRP1k3QNUAW+0qwCJa2TVJNUGxoaatZuzcxsChq6eyoijgD9TDD+IOli4FZgTUSMpuZDwBmlbktT2yHe+Air3D7RMTdGRDUiqpVKpZFyzcysyXLunqpIWpjm5wOrgP11fZYDd1EExuHSqj7gEkmL0gD4JUBfRLwIvCLpwnTX1LXAI005IzMzmzZzMvosAe6V1EERMg9ExGZJG4BaRGyi+DhqAfBgunP2hYhYExEvSboNeDzta0NEvJTmPwfcA8ynGAPpxczMZjUVNy+1h2q1GrVardVlmJm1FUnbI6LajH35G+FmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2XIe9zpP0jZJOyXtlbR+gj4XSXpC0muSrii1f1TSYGn6R0mXp3X3SHqutK6ruadmZmbNlvO411FgZUQMS5oLPCapNyK2lvq8AFwH3FjeMCL6gS4ASYuBA8Bfl7rcFBEPnUD9ZmY2g44bGlE8D3Y4Lc5NU9T1eR5A0uvH2NUVQG9EHJ1SpWZm1nJZYxqSOiQNAoeBLRExMIVjXQ18t67tdkm7JN0p6eQp7NPMzGZQVmhExFhEdAFLgRWSzmvkIJKWAO8H+krNtwDnAhcAi4GbJ9l2naSapNrQ0FAjhzUzsyZr6O6piDgC9AOrGzzOlcDDEfFqaV8vRmEUuBtYMckxN0ZENSKqlUqlwcOamVkz5dw9VZG0MM3PB1YB+xs8zieo+2gqXX0gScDlwJ4G92lmZjMs50pjCdAvaRfwOMWYxmZJGyStAZB0gaSDwMeBuyTtHd9Y0jLgDOD7dfu9T9JuYDdwGvAHJ3oyZmY2vVTcHNUeqtVq1Gq1VpdhZtZWJG2PiGoz9uVvhJuZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZlly3nc6zxJ2yTtlLRX0voJ+lwk6QlJr0m6om7dmKTBNG0qtZ8taUDSAUl/Jumk5pySmZlNl5wrjVFgZUScD3QBqyVdWNfnBeA64DsTbP/ziOhK05pS+5eBOyPil4GXgesbrt7MzGbUcUMjCsNpcW6aoq7P8xGxC3g956CSBKwEHkpN9wKX5xZtZmatkTWmIalD0iBwGNgSEQMNHGOepJqkrZLGg+FU4EhEvJaWDwKnT3LsdWn72tDQUAOHNTOzZssKjYgYi4guYCmwQtJ5DRzjrPRA808CfyjplxopMCI2RkQ1IqqVSqWRTc3MrMkaunsqIo4A/cDqBrY5lH4+C3wPWA78FFgoaU7qthQ41EgtZmY283LunqpIWpjm5wOrgP05O5e0SNLJaf404NeAfRERFOEzfqfVWuCRxss3M7OZlHOlsQTol7QLeJxiTGOzpA2S1gBIukDSQeDjwF2S9qZtfwWoSdpJERJfioh9ad3NwA2SDlCMcXyzeadlZmbTQcUf/e2hWq1GrVZrdRlmZm1F0vY0tnzC/I1wMzPL5tAwM7NsDg0zM8vm0DAzs2wODTMzy+bQMDOzbA4NMzPL5tAwM7NsDg0zM8vm0DAzs2wODTMzy+bQMDOzbA4NMzPL5tAwM7NsDg0zM8vm0DAzs2w5j3udJ2mbpJ2S9kpaP0GfiyQ9Iek1SVeU2rsk/TBtt0vSVaV190h6TtJgmrqad1pmZjYd5mT0GQVWRsSwpLnAY5J6I2Jrqc8LwHXAjXXbHgWujYinJb0b2C6pLyKOpPU3RcRDJ3gOZmY2Q44bGlE8D3Y4Lc5NU9T1eR5A0ut17U+V5v9B0mGgAhzBzMzaTtaYhqQOSYPAYWBLRAw0eiBJK4CTgGdKzbenj63ulHTyJNutk1STVBsaGmr0sGZm1kRZoRERYxHRBSwFVkg6r5GDSFoC/Anw6YgYvxq5BTgXuABYDNw8ybE3RkQ1IqqVSqWRw5qZWZM1dPdUGovoB1bnbiPpFOAvgVvL4yAR8WIURoG7gRWN1GJmZjMv5+6piqSFaX4+sArYn7NzSScBDwPfrh/wTlcfSBJwObCnsdLNzGym5VxpLAH6Je0CHqcY09gsaYOkNQCSLpB0EPg4cJekvWnbK4GLgOsmuLX2Pkm7gd3AacAfNPG8zMxsGqi4Oao9VKvVqNVqrS7DzKytSNoeEdVm7MvfCDczs2wODTMzy+bQMDOzbA4NMzPL5tAwM7NsDg0zM8vm0DAzs2wODTMzy+bQMDOzbA4NMzPL5tAwM7NsDg0zM8vm0DAzs2wODTMzy+bQMDOzbDlP7psnaZuknZL2Slo/QZ+LJD0h6TVJV9StWyvp6TStLbV/SNJuSQckfS09wc/MzGaxORl9RoGVETEsaS7wmKTe8vO+gReA64AbyxtKWgx8EagCAWyXtCkiXgb+CPhtYAD4K4rnjvee4PmYWYPGxsbo7e1lx44dLF++nJ6eHjo6Olpdls1Sxw2NKB7tN5wW56Yp6vo8DyDp9brNL6V4POxLaf0WYLWk7wGnjAePpG9TPCfcoWE2g8bGxrj00ksZGBhgZGSEzs5Ouru76evrc3DYhLLGNCR1SBoEDlOEwEDm/k8HflxaPpjaTk/z9e1mNoN6e3sZGBhgeHiYiGB4eJiBgQF6e/33m00sKzQiYiwiuoClwApJ501vWW+QtE5STVJtaGhopg5r9rawY8cORkZG3tQ2MjLC4OBgiyqy2a6hu6ci4gjQTzH+kOMQcEZpeWlqO5Tm69snOubGiKhGRLVSqTRSrpkdx/Lly+ns7HxTW2dnJ11dXS2qyGa7nLunKpIWpvn5wCpgf+b++4BLJC2StAi4BOiLiBeBVyRdmO6auhZ4ZEpnYGZT1tPTQ3d3NwsWLEASCxYsoLu7m56enlaXZrNUzt1TS4B7JXVQhMwDEbFZ0gagFhGbJF0APAwsAn5D0vqI+NWIeEnSbcDjaV8bxgfFgc8B9wDzKQbA/SGq2Qzr6Oigr6+P3t5eBgcH6erq8t1Tdkwqbo5qD9VqNWq1WqvLMDNrK5K2R0S1GfvyN8LNzCybQ8PMzLI5NMzMLJtDw8zMsjk0zMwsW1vdPSXp/wJPtrqOE3Aa8JNWFzFF7Vw7uP5Wc/2t9c8j4heasaOc72nMJk8267axVpBUa9f627l2cP2t5vpbS1LTvqvgj6fMzCybQ8PMzLK1W2hsbHUBJ6id62/n2sH1t5rrb62m1d9WA+FmZtZa7XalYWZmLdTS0JD0LUmHJe0ptZ0v6YeSdkv6C0mnpPZlkn4uaTBN3yht86HU/4Ckr6V/bn1W1Z/WfSCt25vWz2uX+iV9qvTaD0p6XVJXG9U/V9K9qf1Hkm4pbbNa0pOp/i/MRO1TqP8kSXen9p2SPlLaZsZff0lnSOqXtC+9n38vtS+WtEXS0+nnotSuVNsBSbskfbC0r7Wp/9OS1k537VOs/9z032VU0o11+5rx988U6v9Uet13S/qBpPOnXH9EtGwCLgI+COwptT0OfDjNfwa4Lc0vK/er28824EJAFP/Ees8srH8OsAs4Py2fCnS0S/11270feKbNXv9PAven+XcCz6f3VAfwDPAe4CRgJ/C+WVj/54G70/y7gO3AO1r1+lM8MuGDaf4XgKeA9wF3AF9I7V8AvpzmP5ZqU6p1ILUvBp5NPxel+UWzsP53ARcAtwM3lvbTkvfPFOr/l+OvK9BTev0brn/afzEyTn5Z3S/Nz3hjrOUMYN9E/epevP2l5U8Ad83C+j8G/Gm71l+3zX8Fbm+n+lNdf0ER3qemX7LFwL+geDDY+Pa3ALfMwvq/DvxWqd+jwIpWv/6l4z5C8YC2J4ElpffGk2n+LuATpf5PpvVvqre+32ypv9Tvv/Dm0Gjp+6fR+lP7IuDQVOufjWMae4HfTPMf582Piz1b0g5J35f0r1Pb6cDBUp+Dqa1VJqv/vUBI6pP0hKT/nNrbpf6yq4Dvpvl2qf8hYAR4EXgB+G9RPBDsdODHpe1na/07gTWS5kg6G/hQWtfy11/SMmA5MAD8YhRP5gT438AvpvnJXueWv/6Z9U+mHeu/njceetdw/bMxND4DfE7SdorLrn9K7S8CZ0bEcuAG4DsqjRfMIpPVPwf4V8Cn0s9/K+nftKbEY5qsfgAkdQNHI2LPRBvPApPVvwIYA94NnA38J0nvaU2JxzRZ/d+i+IWuAX8I/IDifFpK0gLgfwD/ISJeKa+L4k/XWX175tutfkkfpQiNm6d6zFn3z4hExH6KZ4kj6b3Ar6f2UWA0zW+X9AzFX++HgKWlXSxNbS0xWf0Uv/B/FxE/Sev+iuLz7D+lPeofdzVvXGVA+7z+nwT+Z0S8ChyW9PdAleKvrPLV1KysPyJeA/7jeD9JP6D4iO1lWvT6S5pL8T+s+yLiz1Pz/5G0JCJelLQEOJzaDzHx63wI+Ehd+/ems+5xDdY/mcnOa9o1Wr+kDwB/TDHm9dPU3HD9s+5KQ9K70s93AL8PfCMtV1Q8p5z0F+I5wLPpUuwVSRemu0aupfh8ryUmqx/oA94v6Z2S5gAfpvi8ul3qH2+7Erh/vK2N6n8BWJnWdVIMxu6nGHg+R9LZkk6iCMVNM133uGO8/9+Z6kbSKuC1iGjZ+ycd65vAjyLiq6VVm4DxO6DWlmrZBFyrwoXAz1LtfcAlkhalO30uSW2zrf7JtOT902j9ks4E/pxiXOypE6p/pgds6gZkvkvxsdOrFH+JXw/8HsVfUE8BX+KNQcF/R/F57yDwBPAbpf1UgT0UdwH89/FtZlP9qf816Rz2AHe0Yf0fAbZOsJ9ZXz+wAHgwvf77gJtK+/lY6v8McOssff8voxjk/BHwN8BZrXz9KT5iDYo7AgfT9DGKmwweBZ5OdS5O/UUxmP8MsBuolvb1GeBAmj49Q699o/X/s/Tf6BXgSJo/pVXvnynU/8cUV6XjfWtTff/7G+FmZpZt1n08ZWZms5dDw8zMsjk0zMwsm0PDzMyyOTTMzCybQ8PMzLI5NMzMLJtDw8zMsv0/bzAJyv7JyrkAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig7 = plt.subplots(1,1)\n",
"plt.xlim([mdates.date2num(startt.datetime),mdates.date2num(endt.datetime)])\n",
"plt.plot_date(times3,magnitudes3, color = \"black\", marker='.', markersize = 10) \n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAD99JREFUeJzt3X2wXHddx/H3h6YV6ANPuWBtUhLGVM0A0noNnQGhysOkdWidQaBBRxQko1AH5GEmDEzFojM8OMgwU8SMFCojlAI+hCFSnqp1gNbc0LQ0SUtDrDSlmgAFxEpD8Osf50S2t0l2783ebO6v79fMTs75nd+e8z2/7H5y9pzdk1QVkqS2PGTSBUiSxs9wl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDVoyaQ2vHTp0lqxYsWkNi9Ji9LWrVu/WVVTw/pNLNxXrFjBzMzMpDYvSYtSkn8fpZ+nZSSpQYa7JDXIcJekBhnuktQgw12SGjQ03JNckWRvklsOszxJ3p1kV5Kbk5wz/jIlSXMxypH7B4C1R1h+PrCqf6wH/uLoy5IkHY2h4V5V1wHfPkKXi4C/rs71wCOTnD6uAiVJczeOc+5nAHcOzO/p2yRJE3JML6gmWZ9kJsnMvn37juWmJR3Hkky6hOaMI9zvApYPzC/r2x6gqjZW1XRVTU9NDb01giRpnsYR7puA3+q/NXMu8N2qunsM65UkzdPQG4cl+TBwHrA0yR7gj4ATAarqvcBm4AJgF3Av8DsLVawkaTRDw72q1g1ZXsArx1aRJOmo+QtVSWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoNGCvcka5PclmRXkg2HWH5mkmuT3Jjk5iQXjL9USdKohoZ7khOAy4HzgdXAuiSrZ3V7E3B1VZ0NXAy8Z9yFSpJGN8qR+xpgV1Xtrqr9wFXARbP6FHBaP/0I4BvjK1GSNFdLRuhzBnDnwPwe4Kmz+rwZ+HSSPwBOBp49luokSfMyrguq64APVNUy4ALgg0kesO4k65PMJJnZt2/fmDYtSZptlHC/C1g+ML+sbxv0MuBqgKr6EvBQYOnsFVXVxqqarqrpqamp+VUsSRpqlHDfAqxKsjLJSXQXTDfN6vN14FkASX6OLtw9NJekCRka7lV1ALgEuAbYSfetmO1JLktyYd/ttcDLk9wEfBj47aqqhSpaknRko1xQpao2A5tntV06ML0DeNp4S5MkzZe/UJWkBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAaNFO5J1ia5LcmuJBsO0+eFSXYk2Z7kQ+MtU5I0F0uGdUhyAnA58BxgD7Alyaaq2jHQZxXwBuBpVXVPkscuVMGSpOFGOXJfA+yqqt1VtR+4CrhoVp+XA5dX1T0AVbV3vGVKkuZilHA/A7hzYH5P3zboLOCsJF9Icn2SteMqUJI0d0NPy8xhPauA84BlwHVJnlRV3xnslGQ9sB7gzDPPHNOmJUmzjXLkfhewfGB+Wd82aA+wqap+WFX/BnyVLuzvp6o2VtV0VU1PTU3Nt2ZJ0hCjhPsWYFWSlUlOAi4GNs3q8/d0R+0kWUp3mmb3GOuUJM3B0HCvqgPAJcA1wE7g6qranuSyJBf23a4BvpVkB3At8Pqq+tZCFS1JOrJU1UQ2PD09XTMzMxPZtqTjSxImlUWLTZKtVTU9rJ+/UJWkBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1aKRwT7I2yW1JdiXZcIR+z09SSabHV6Ikaa6GhnuSE4DLgfOB1cC6JKsP0e9U4FXADeMuUpI0N6Mcua8BdlXV7qraD1wFXHSIfm8B3gb8YIz1SZLmYZRwPwO4c2B+T9/2/5KcAyyvqk+OsTZJ0jwd9QXVJA8B3gm8doS+65PMJJnZt2/f0W5aknQYo4T7XcDygfllfdtBpwJPBP4pyR3AucCmQ11UraqNVTVdVdNTU1Pzr1qSdESjhPsWYFWSlUlOAi4GNh1cWFXfraqlVbWiqlYA1wMXVtXMglQsSRpqaLhX1QHgEuAaYCdwdVVtT3JZkgsXukBJ0twtGaVTVW0GNs9qu/Qwfc87+rIkSUfDX6hKUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDRgr3JGuT3JZkV5INh1j+miQ7ktyc5HNJHj/+UiVJoxoa7klOAC4HzgdWA+uSrJ7V7UZguqqeDHwMePu4C5UkjW6UI/c1wK6q2l1V+4GrgIsGO1TVtVV1bz97PbBsvGVKkuZilHA/A7hzYH5P33Y4LwP+8VALkqxPMpNkZt++faNXKUmak7FeUE3ym8A08I5DLa+qjVU1XVXTU1NT49y0JGnAkhH63AUsH5hf1rfdT5JnA28EnllV942nPEnSfIxy5L4FWJVkZZKTgIuBTYMdkpwN/CVwYVXtHX+ZkqS5GBruVXUAuAS4BtgJXF1V25NcluTCvts7gFOAjybZlmTTYVYnSToGRjktQ1VtBjbPart0YPrZY65LknQU/IWqJDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUEjhXuStUluS7IryYZDLP+JJB/pl9+QZMW4C5UkjW5ouCc5AbgcOB9YDaxLsnpWt5cB91TVTwN/Drxt3IVKkkY3ypH7GmBXVe2uqv3AVcBFs/pcBFzZT38MeFaSjK9MSdJcjBLuZwB3Dszv6dsO2aeqDgDfBR4zjgIlSXO35FhuLMl6YH0/+/0ktx3L7c/DUuCbky7iOOA4OAYHLdg4LKIP+5N+LTx+lE6jhPtdwPKB+WV926H67EmyBHgE8K3ZK6qqjcDGUQo7HiSZqarpSdcxaY6DY3CQ47B4xmCU0zJbgFVJViY5CbgY2DSrzybgJf30rwOfr6oaX5mSpLkYeuReVQeSXAJcA5wAXFFV25NcBsxU1SbgfcAHk+wCvk33D4AkaUJGOudeVZuBzbPaLh2Y/gHwgvGWdlxYNKeQFpjj4Bgc5DgskjGIZ08kqT3efkCSGvSgC/ckVyTZm+SWgbafT/KlJF9J8okkp/XtK5L8T5Jt/eO9A89Z1/e/OcmnkiydxP7MxxzH4DcG9n9bkv9N8pQkD0/yySS3Jtme5K2T26P5meM4nJjkyr59Z5I3DDznjr59W5KZSezLfM1xDE5K8v6+/aYk5w0850X9e2F7kkX1C/Uky5Ncm2RHX/+r+vZHJ/lMktv7Px/Vt/9sPz73JXndwHoemuRf+7HZnuSPJ7VPAFTVg+oBPAM4B7hloG0L8Mx++qXAW/rpFYP9BvovAfYCS/v5twNvnvS+LcQYzHrek4Cv9dMPB365nz4J+Bfg/Env2wK+Fl4MXDWw73cAK/r5Ow6+FhbbY45j8Erg/f30Y4GtdAeIjwG+Dkz1y64EnjXpfZvDGJwOnNNPnwp8le5WK28HNvTtG4C3Dez7LwJ/CrxuYD0BTumnTwRuAM6d1H496I7cq+o6um/0DDoLuK6f/gzw/CGrSf84ub/NwmnAN8ZZ50I6ijFYR3f7Carq3qq6tp/eD3yZ7jcQi8Ycx6Ho/r6XAA8D9gPfOxZ1LqQ5jsFq4PP98/YC3wGmgScAt1fVvr7fZxn+HjpuVNXdVfXlfvq/gJ10v7ofvK3KlcCv9X32VtUW4Iez1lNV9f1+9sT+MbGLmg+6cD+M7fz4fjkv4P4/2lqZ5MYk/5zklwCq6ofA7wNfoQv11XRfB13MjjQGB70I+PDsxiSPBJ4HfG7Bqjt2DjcOHwP+G7ib7ij1z6rqYCgW8OkkW/tfYS92hxuDm4ALkyxJshL4hX7ZLuBn+tOYS+hC8FCvn+Nef0fbs+mOuh9XVXf3i/4DeNwIzz8hyTa6T/afqaobFqjUoQz3zkuBVyTZSvexbH/ffjdwZlWdDbwG+FCS05KcSBfuZwM/BdwMvOGBq11UDjcGACR5KnBvVd0yq30JXeC/u6p2H6tiF9DhxmEN8CO6v++VwGuTPKFf9vSqOofuzqmvTPKMY1zzuB1uDK6gu7fUDPAu4IvAj6rqHrr3w0foTs/dQTdWi0qSU4CPA6+uqvt9KqvuXMvQo/Cq+lFVPYXuU+yaJE9ckGJHcEzvLXO8qqpbgecCJDkL+NW+/T7gvn56a5Kv0X1kTd/2tf45V9Odk1u0DjcGAy7mEEftdN/5vb2q3rWwFR4bRxiHFwOf6j+17U3yBbpTErur6q7+uXuT/B3dPwTXPWDli8QR3g8HgD882C/JF+nOT1NVnwA+0bevZ5GFe3/A9nHgb6rqb/vm/0xyelXdneR0uqPxkVTVd5JcC6wFbhnWfyF45A4keWz/50OANwHv7een0t3Pnv4obRWwm+5eOquTTPWreA7debpF63BjMND2Qvrz7QPtf0J3H6FXH7tKF9YRxuHrwK/0y04GzgVuTXJyklMH2p/LhN7M43KE98PD+30kyXOAA1W1Y9ZzHgW8AvirCZQ+L/11s/cBO6vqnQOLBm+r8hLgH4asZ6o/RUmSh9Hlwq3jr3hEk75SfawfdEefd9NdDNlD9x+NvIruCOSrwFv58Y+7nk93/nEb3QXD5w2s5/foAv1muiOWx0x63xZiDPr+5wHXz1rHMrqPqTv78dkG/O6k920BXwunAB/tXw87gNf37U+gOxd9U7/sjZPerwUcgxXAbf3f+WeBx89az47+cfGk92uOY/D0/rV888Br+QK6bwF9Dri9399H9/1/sh+r79FdVN5D96WKJwM39uu5Bbh0kvvlL1QlqUGelpGkBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ16P8A2Ny26Bm2JR8AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig8, axes = plt.subplots(1,1)\n",
"axes.hist(times3, bins=70, color=\"black\")\n",
"plt.xlim([mdates.date2num(startt.datetime),mdates.date2num(endt.datetime)])\n",
"axes.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Given that earthquakes are so rare in Iowa, it is effectively impossible to say whether or not earthquake rates are remaining constant there. It is of note that earthquakes are also relatively uncommon in North Dakota, but that state still saw an increase in seismicity. \n",
"\n",
"More exhaustive studies would better determine whether fracking has indeed contributed to this rise in seismic activity in certain states. The answer to this question would help us make more informed decisions about how we extract natural resources, and how we can prevent said extraction from adversely affecting the environment and society."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}