Seismic-afterslip characterisation of the 2010 Mw 8.8 Maule earthquake based on moment tensors inversion

Hans Agurto Detzel

an man Manager of Manager Man Manager and Mana

Concepción, 5-March-2013

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L20303, doi:10.1029/2012GL053434, 2012

Seismic-afterslip characterization of the 2010 $M_W 8.8$ Maule, Chile, earthquake based on moment tensor inversion

Hans Agurto,¹ Andreas Rietbrock,¹ Isabelle Ryder,¹ and Matthew Miller²

Received 10 August 2012; revised 9 September 2012; accepted 11 September 2012; published 17 October 2012.

[1] On February 27th 2010, a $M_W 8.8$ earthquake struck the coast of south-central Chile, rupturing ~500 km along the subduction interface. Here we estimate the amount of seismically-released afterslip (SRA) and the mechanisms underlying the distribution of aftershocks of this megathrust

interior.gob.cl/filesapp/listado_fallecidos_desaparecidos_27Feb. pdf).

[3] The segment that ruptured in 2010 was previously identified as a mature seismic gap [*Campos et al.*, 2002; *Ruegg et al.*, 2009] and coincides with the region affected by

<u>Thanks to:</u> Andreas Rietbrock and Isabelle Ryder (Liverpool) Matt Miller (Concepción) Marcelo Assumpção (São Paulo)

Motivation and Hypothesis

- Agreement with published co-seismic slip models?
- Previous studies on aftershocks distribution. Goal -> Quantification
- Similarities with Tohoku-oki earthquake
- Seismic-afterslip modelling

Hypothesis: Aftershocks occur outside area of highest co-seismic slip

Introduction to the Study

IMAD dataset

• Full-waveform moment tensor inversion ISOLA software (125 events) Sokos & Zahradnik, 2008. Comput. Geosc.

• Fixed epicentral locations Rietbrock et al., 2012. GRL

+ relocated GCMT solutions Mw>5 (145 events)

Results

Hans Agurto - Seismic-afterslip characterisation of the 2010 Mw 8.8 Maule earthquake

Results

Normal events in Pichilemu area Ryder et al. (2012). GJI; Farías et al. (2011). Tectonics Japan – Kato et al. (2011). EPS.

Crustal strike-slip events

e.g.: Mw5.1 at ~37^oS/71^oW associated to NW structures in Nevados de Chillán volcano.

Interface Thrust aftershocks

Interface Thrust Aftershocks

Interface Thrust Aftershocks

Chile, 2010

Japan, 2011

Distribution of Thrust Aftershocks VS Published Co-seismic Slip Models

Supplementary Figure 4. Interface thrust events plotted together with published coseismic slip models. Features are same of Figure 3a.

Hans Agurto - Seismic-afterslip characterisation of the 2010 Mw 8.8 Maule earthquake

Seismically-released Afterslip (SRA) Modelling

SRA Model

Interface thrust events and SRA model. Interface events were defined as those located at depths within 13 km (GCMT) and 6 km (this work) from the top of the slab respectively. **a)** Coseismic slip model [Moreno et al., 2012] and interface thrust events colored by vertical distance from the top of the slab. Inset: histogram of frequency of thrust events according to their nodal planes' dip angles; dashed blue line indicates dip angle of mainshock (megathrust plane). **b)** Cumulative SRA. Inset: exponential relationship between calculated M_w and slip. **c)** Cumulative SRA model for the 12-day period following the mainshock. Red contour lines show the 12-day postseismic afterslip model proposed by Vigny et al. [2011] every 0.1 m. Inset: same as 3b, including 1\sigma of slip from scaling relationships (blue and red dots).

SRA Progression In Time

Cumulative

Non-Cumulative

Quantification of Aftershocks Distribution

$$R_{ds} = \frac{(N_{ds} / N_t)}{(A_{ds} / A_t)}$$

R_{ds} → Normalized seismicity occurring within a given slip range (ds) relative to its areal distribution

N_{ds} → Number of events occurring within a given slip range ds

 $N_t \rightarrow Total number of events$

 A_{ds} \rightarrow Area covered within a given slip range ds

 $A_t \rightarrow Total area$

If $R_{ds} > 1$ \rightarrow Seismicity greater than average

If $R_{ds} < 1$ \rightarrow Seismicity smaller than average

Quantification of Aftershocks Distribution

Histograms of aftershock distribution for (a) interface events from expanded catalogue published by Rietbrock et al. [2012], (b) largest interface thrust events. Green line shows R_{ds} values (left axis), blue line corresponds to the cumulative percentage of R_{ds} values (right axis), black line is the cumulative percentage of events (right axis). Red dots indicate one standard deviation values of R_{ds} for randomly distributed events test.

Conclusion

- Catalogue of 270 RMT solutions
- Thrust faulting dominates (70%). Normal faulting in the Pichilemu area
- Absence of major thrust aftershocks in main coseismic slip patches
 - Bulk of intraplate stress released co-seismically
 - No major slip can occur post-seismically
- Interplate thrust aftershocks located on dislocation tips
- Highest SRA value (1.7 m) located in between the two main patches of coseismic slip
 - **Distribution Quantification:**
- Largest thrust aftershocks (>M4) occur in intermediate coseismic slip areas (0.2-0.7 S_{max})
- Smaller events in areas of larger coseismic slip (>0.85 S_{max}) associated to damage zone
- Method transferable to other tectonic environments/major earthquake.

Relocation of GCMT events

- GCMT events are biased to the southwest, towards the trench, for centralsouth Chile
- Similar biases for PDE (USGS) and PTWC (NOAA) catalogues (but different directions)
- Important for early tsunami warnings specially when close to the coastline!

Supplementary Figure 1. Relocation of GCMT events. Arrows start at GCMT position and end at relocated position showing GCMT solutions present a bias of 16 km in average towards SW direction.

Supplementary Figure 2. Comparison of obtained magnitudes. Left plot shows local magnitudes [Rietbrock et al., 2012] versus M_W obtained in this work. Right plot shows GCMT magnitudes versus this work's magnitudes.

