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1. Introduction
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Fig 4.2: 2D velocity models with estimated thrust interface geometry 
(dashed line).

Fig 4.3: Histogram of events from catalogue of Rietbrock et al. 
(2012) and seismic velocity structure along thrust interface.

p

Fig 4.4: 3D Vp and Vp/Vs models. Both sections are oriented 
perpendicular to the trench and cross through the Pichilemu 

and Arauco areas of the rupture zone, respectively 
(Locations on Fig. 4.1).

4.   Shedding more light on the marine forearc  
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1.   Introduction
The 2010 Maule, Chile earthquake is currently the 6th 

largest earthquake to have been recorded. It provides an 

opportunity to investigate the factors governing energy 

release and deformation along subduction megathrusts.

Published co-seismic slip distribution (e.g. Moreno et al., 

2012) and aftershock distributions (e.g. Rietbrock et al., 

2012) imply rupture zone properties vary spatially.

Such variations can be viewed within the subduction zone 

asperity/barrier framework. Heterogeneity within the 

rupture zone may be expressed in seismic properties.

We image the seismic velocity structure of the Maule region 

by using travel-time data from aftershocks. Data primarily 

come from the International Maule Aftershock Deployment 

(IMAD). Most aftershock seismicity and co-seismic slip is 

concentrated seaward of the Chilean coastline. 

Using the onshore recordings alone inherently fails to 

resolve the offshore aftershock locations and offshore 

velocity structure well (Section 3). We have incorporated 

data from offshore ocean-bottom seismometer (OBS) 

networks to improve our understanding of the offshore 

region (Section 4).

2.   Inversion method

3.   First-order velocity structure

Ÿ Use VELEST to invert for 1D P- & S-wave velocity models, 
including station correction terms.

Ÿ Tomographic inversion using SIMUL2000 (Thurber, 1983) - 
weighted least squares approach.

Ÿ Direct determination of Vp / Vs ratio by inverting for S-P 
travel times

Ÿ Staggered inversion scheme (e.g. Haberland et al., 2009) 
to ensure that any potential artefacts are not propagated 
through to final model. See Hicks et al. (2012) for details.

5.   Summary  
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a)Velocity/gravity anomaly in Darwin Gap

ŸVelocity anomaly is compositionally similar to 
hydrated oceanic crust or mantle.

ŸAnomaly does not correlate with surface outcrops 
Paleozoic/Triassic granitoids.

ŸCannot reconcile with tomography alone whether 
seamount structure is attached to subducting crust.

ŸDown-dip of mainshock nucleation area, yet in a 
region of somewhat low co-seismic slip. How can it 
be classified within an asperity/barrier model?

ŸIf sheared off, then aseismic creep may be occurring 
at its base. If it remains fully coupled, then it may still 
be locked, acting as a geometrical irregularity.

b) Velocity structure vs. seismicity 
distribution

ŸUp-dip seismogenic zone limit dominated by fluid-
saturated sediments / oceanic crust in marine 
forearc (vp < 6.0 km/s, vp/vs > 2.00).

ŸDeep cluster of seismicity associated with high vp/vs 
(> 1.85). Located up-dip of continental moho. High 
pore fluid pressure & possible dehydration in slab?

ŸGreatest co-seismic slip occurred where megathrust 
is overlain by slower P-wave velocities.

Fig 3.1: Location of sources (red circles) and receivers 
(triangles) used in this inversion. Black lines show the 
location of the slices through the 3D model.

a) Inversion details c) 3D Velocity model d) Interpretation

e) Comparison with forearc Bouguer 
gravity field

a) Inversion details &
    1D locations

b) 2D Velocity model

b) 2D Velocity model

(a) Continental crust
Max. thickness 50 km beneath E. coastal ranges

(b) Marine forearc

(c) Central depression basin

(d) Continental mantle
Intersection of continental Moho with interface 

coincides with maximum depth extent of  
seismogenic zone

(e) Subducting oceanic crust
Interface dip angle ~12-18° correlates with prior 

estimates of regional slab geometry

(f) & (g) High Vp (and elevated Vp / Vs) 
anomalies 

One in mainshock nucleation area, and one 
beneath the Pichilemu region; both lie beneath 

coastline on top of the megathrust. Both protrude 
above interface by 4-10 km.

Fig. 3.5: Forearc 
Bouguer gravity 

contribution 
(Tassara & 

Echaurren, 2012), 
overlain by 

interface Vp (km/s) 
contour lines 

projected to the 
surface.   

Fig. 3.4: Vp 
along plate 
interface and co-
seismic slip 
model of 
Moreno et al. 
(2012)
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Fig. 3.3: Cross-sections 
through 3D P-wave velocity 
model 
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d) 3D Velocity model
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Fig. 4.1: Location of sources and receivers used in 
this inversion. Black line demarcates velocity models 
used to form 1D locations.
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