35 Years of Global Broadband Array Seismology in Germany and Perspectives

> Frank Krüger, University of Potsdam Michael Weber, GFZ, University of Potsdam

> > WORKSHOP on ARRAYS in GLOBAL SEISMOLOGY

Overview

- Seismological Arrays in Germany
- Structural Imaging
- Imaging of Quasi- Continuous Sources
- Arrays and the Seismic Source
- 3-d Array
- Polarisation and Anisotropy
- Deep Ocean Test Array (DOCTAR)

The Gräfenberg Array (GRF)

Broadband data since 1975. Continuous data since 1977. 12 vertical, 3 3-C Streckeisen STS1 (20 s) stations since 1979.

 Organized by University
Consortium (Hilfseinrichtung of German Research Council)

Scientific objective

Upgrade to 12 3-C STS2 instruments in 2006

Array Methods

Thomas 08

Depth Determination by Pn-sPn

Fig. 7. The same as in Figure 2 for event A1. Again the displacement proportional bandpass is used as in Figure 4.

Zonno and Kind, 1983

Full wavefield synthetics (reflectivity method)

P-Reflections from D"

Kurile earthquakes recorded at GRF.

Weber, 1993

Seismological Arrays in Germany

GRSN (broadband STS2 since 1992)

P-Reflections from D"

Freybourger et al., 2000

Neumayer Array, Antarctica (Alfred Wegener Institute AWI)

1 broadband 3 Cand 15 vertical 1 Hz sensors.

Since 2000 continous data, realtime data transmission.

(A. Eckstaller, AWI)

Double Beamforming – Simultaneous Use of Source and Receiver Arrays

Source Array: Deep Cluster beneath Mariana Trench Receiver Arrays: GRF and WRA -Australia

Krüger et al., 2001

Array methods

Migration

Ampl. at b.p.

Scattering above the CMB from PKP recordings at GRSN

red: high amplitude (abs) white lines: isochrones

Thomas et al 1999

Imaging of quasi-continuous Sources: Oceanic Microseisms

Essen et al., 2003

Dominant Source Regions of Oceanic Microseisms in the Northern Atlantic

Dominant Source Regions of Oceanic Microseisms in the Northern Atlantic

WAM Model

Combined Azimuth Estimation by 3 Arrays

Ocean Microseisms as Climate-Proxy? Analysis of Historical and Digital Data

Dahm et al. 2003

Dec 26, 2004, M9.2 Sumatra Andaman Earthquake Backprojection of P-waves recorded at GRSN

Krüger and Ohrnberger, 2005

Systematic Scanning of the Source Region

Spatio-temporal Rupture Evolution as imaged by GRSN

Improved Resolution by Simultaneous Use of Several Arrays

142 global stations:

Germany 19 Europe 46 Central Asia 10 Japan 43 Australia/ 12 Oceania Antarctica 3 Africa 9

Implementation as additional Component in GITEWS (German Indonesian Tsunami Early Warning System)

Ehlert & Rößler, 2009

Not (only) a Success: 3-d Array at KTB site (9000 m deep research borehole in crystalline basement)

Plan: Installation of seismometers in the "Kontinentale Tiefbohrung" in Northern Bavaria in addition to a surface array.

Hope: Less attenuation, less noise, less scattering.

Outcome: Sensor could not survive 275 °C for long, data transmission difficult.

Trela, 2003

What about Anisotropy? P -wave Polarization Results at GRF and GRSN

P wave polarization: sensitive to azimuthal anisotropy and local heterogeneity

Application to 20 years of GRF and GRSN data resulting in about 1000 high qualtiy P-waveforms

Frequency dependence of measurements

Harmonic analysis of dependence on backazimuth

Azimuthal deviations as function of backazimuth

-20

Cristiano et al. 2013

P -wave Polarization Analysis at GRSN Direction of Fast Axis (harm. analysis)

Cristiano et al., 2013

DOCTAR Project Array Deployments

12 3-C broadband (Guralp 60 s) seismometers and HTI hydrofones in 5000 m water depth. Madeira Array: 12 broadband and 12 shortperiod seismometers. Portugal: 12 broadband seismometers

DOCTAR: Orientation of 3-C Stations

seismometer orientation compared to true North direction as measured with a portable gyrocompass (GIPP)

declination calculated using the current International Geomagnetic Reference Field (IGRF) model

(http://www.ngdc.noaa.gov/geomag-web/#declination)

weighted average misfit between observed P-phase amplitudes of several teleseismic events on horizontal components and amplitudes as expected from corresponding P-phase polarization on vertical component for all tested azimuths, the error bars give the first standard deviation

Still problematic for OBS.

OBS: Clock Drift Correction using Ambient Noise

Correlation traces for station pair D01 and D02.

Jul 6, 2011, Mw 7.6, S29.54 W176.34, h=17 km

Extracted clock differences for station pair D01 and D02 for one day stack (open circles) and 20 days stack.

Hannemann et al., 2013

Array Processing Examples

Spectra of vertical component for OBS stations (blue) and Madeira broadband stations (red) for one day of data (01. August 2011)

- upper panels: broadband recordings of Madeira and OBS array for 23. October 2011, Van Merkez, Turkey, Mw 7.1 earthquake
- lower panels: result of fk-analysis of P-wave for Madeira and OBS array
- ► theoretical values: array azimuth [°] P-slowness [^s/_○] Madeira 65.00 7.7 OBS 69.22 7.8

Madeira

50.0 s/deg (slowness)

- 0'8

normalised BP

0.0 0.4

180"

OBS

D12 Z	
D11 Z	
D10 Z	
D09 Z	
D08 Z	
D07 Z	
D06 Z	anana katera
D04 Z	
D03 Z	
D02 Z	an a
D01 Z	
	·
	0 200 400 600 800 1000 1200 1400 1600 1800 2000 Time [s]
	23-001-2011_10:40.22
.00	Beam Power maximum 0.693372547626 at azimuth: 885°. app. velocity 0.12 deg/s, slowness 8.21 s/deg frequency window: 0.02 - 100 Hz
°6-	25.0 37.5 50.0s/deg (slowness)

0.0 0.4

160

0.8

normalised BP

Moving window f-k analysis detection results

Madeira

Number of Detections

40 s time window length, 10 s time step, bandpass 7-25 s.

Some Conclusions

In 1975 several important developments merged:

Broadband, high gain, high dynamic range instrumentsContinuous recording of digital data

•Full wavefield modelling methods (1d media)

Challenges

- •Multi scale arrays
- •Multi array methods
- •Full use of 3-C information
- •Recording of high(er) frequencies
- •Arrays in the ocean

DOCTAR: Clock Drift Correction

DOCTAR: Clock Drift Correction, Results for Vertical Seismometer Components

Clock drift is linear, large skew values and constant offsets are real!

Stammler 2013

May 15-16, 2013

WORKSHOP on ARRAYS in GLOBAL SEISMOLOGY

Hanka 2013