Fault Structure, Friction, Rupture Dynamics, and
Strong Ground Motion

resolving nucleation and coseismic rupture process

differences in nucleation of large and small events?

(persistent?) geometrical controls on rupture velocity and slip

imaging duration of slip: slip pulses or cracks?
resolving rupture front and frictional weakening (unlikely...)

constraints on fracture energy (and fault weakening processes),
indirectly from earthquake energy balance for small events,
more directly with kinematic slip inversions for large events

ground motion prediction from ambient noise Green’s functions




Persistent Geometrical Barriers to Rupture?

2000 Mw 7.9 Kokoxili earthquake: slip minima coincide with
structural complexities (push-ups, step-overs, etc.)
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Strong Local Control of Geometry on Rupture

simulations of dynamic rupture on rough (fractal) fault surface:
both slip and rupture velocity correlated with fault slope
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[Dunham et al., 2011; Trugman and Dunham, 2013]



Large-Scale Fault Geometry

geometrical irregularities provide additional resistance to
slip and radiate energy otherwise available to drive
rupture =2 fast rupture velocities require straight faults
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Long Beach Array

>5000 stations, 100-m spacing
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Ground Motion Prediction: Virtual Earthquakes

e cross-correlation of ambient noise provides surface-to-surface
Green’s functions between virtual “station sources” and receivers

e convert to buried double couple source, sum multiple point sources
to obtain ground motion from virtual Mw 7 earthquake
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Earthquake count

Fig. 2. Cumulative count of earthquakes with M > 3 in the central and eastern United States,
1967-2012. The dashed line corresponds to the long-term rate of 21.2 earthquakes/year. (Inset)
Distribution of epicenters in the region considered here.
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Induced Seismicity

e earthquakes (up to Mw 5.7) associated
with injection of wastewater from
production of unconventional
hydrocarbons in central and eastern US

* rates there now higher than in CA

 most disposal operations (and hydraulic
fracturing operations, which involve
much smaller fluid volumes) do not
cause earthquakes—what special
conditions are required?
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Depth (km)

Injection into Sedimentary Layers,
Earthquakes Extending into Basement
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fluid migration along faults or other conductive pathways
into basement (where largest, hazardous faults located)

Youngstown, Ohio 2011-2012
up to Mw 3.9 from injection
at disposal well [Kim, 2013]



Activation of Existing Basement Faults with

Favorable Orientation in Current Stress Field

Prague, OK, 2011 Mw 5.0, 5.7, 5.0 strike-slip +
aftershocks (in sediments and basement)

96.8°W

96.75°W 96.7°V
—_—

35.45°N

¢ EQs between A-B
® EQs between B-C

Oil fields

W '/ Disposal wells

© EQs between C-C+1hr [l |nitial 3 stations

== Regional faults

B Other stations

[Keranan et al., 2013]

injection into

C Arbuckle formation,
Wells 1&2

Distance along Y-y (km)

accurate locations from seismic network
including PASSCAL and EarthScope TA stations!

on top of basement




Future Directions for Induced Seismicity

precise locations and focal mechanisms (improved
structural models) interpreted in context of 1.
regional stress, 2. injection-induced poroelastic
changes in stress and pore pressure, 3. friction
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predicted faulting styles from what if induced earthquake
extraction [Segall, 1989] TS~ | _=— sequence was recorded on

—_

constraints on depth from waveform
modeling: Timpson, Texas 2012
Mw <= 4.8 at 1.6-4.6 km depth from  of
disposal wells injecting at 1.9 km B
[Frohlich et al., 2014]




Volcanic Hazards

e track magma migration into shallow storage areas
using seismicity and geodesy

e forecasting of eruptions, dome collapse, etc.

* understand eruptive processes to level enabling
predictions of event duration and intensity from
seismic, geodetic, infrasound data

Challenges:

» diversity of eruption styles and seismic/infrasound signals, reflection of
diverse magma properties (viscosity and gas content) and ascent rates

* propagation (path/site) effects complicated, obscuring source details
— seismic waves: scattering, low Q, low velocity layers on edifice
— infrasound: wind, topography, vent geometry



Structure of Volcanoes

inferred magma distribution beneath Erebus volcano, Antarctica, from

e active source tomography

* |ocation of scatterers from back-projection of body wave Green’s functions
obtained by interferometry (scattered waves excited by Strombolian explosions)
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low velocities and strong scattering
likely indicate magma
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Very-Long-Period (VLP) Seismicity

0.01-0.5 Hz signals likely associated with oscillations of magma
within conduit/dikes/sills

 example below associated with rockfalls into Halemaumau

crater, but often accompanies explosions/eruptions
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potential constraints on magmatic system (geometry, gas content, exsolution
depth, etc.) using models coupling fluids in cracks and conduits to elastic solid



Long-Period (LP) Seismicity
* 0.5-5 Hz signals seen at many volcanoes, routinely used to forecast eruptions,
arising from many processes

* proposed source mechanisms include unstable fluid flow, oscillation of cracks,
brittle failure of magma as trigger, stick-slip on walls of plugs, venting of gas, etc.

* sometimes observed on infrasound also, indicating shallow source
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Recommendations

Large-N arrays to capture spatial and temporal variations in structure (faults,
damage zones, volcanoes, etc.), locate events, and to image earthquake ruptures
and volcanic eruptions
Offshore observatories for subduction zones: structural models, seismicity, creep,
and megathrust events (applications might require different instruments)
Rapid response capabilities to chase suspicious foreshock & large aftershock
sequences, induced earthquakes, volcanic crises

* Precise locations & mechanisms

* Lower magnitude thresholds

* Increased resolution of big events
Account for non-isotropic distribution of sources in ambient noise seismology
Improved analysis tools

* Data processing

* Inverse modeling with proper quantification of uncertainties

* Forward modeling, especially based on physical processes

* Access to sufficient compute power



