

0 40° 03' 39.53" Ν 0 -110' 17'9.6215999"Ν 33' 6.6852" Ν λ35° 58' 26.700

Insights into fluids and melt in the crust and mantle from 3D Inversion of EarthScope MT Data

Gary D. Egbert, Oregon State University

€ 40° 03′ 39.53″ N

θ -110° 17'9.6215999° 33' 6.6852" Ν ...λ 35° 58' 26,70

Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data

Naser M. Meqbel^{a,b,*}, Gary D. Egbert^a, Philip E. Wannamaker^c, Anna Kelbert^a, Adam Schultz^a

MT component of USArray Transportable Array

NW USA: 325 sites completed 2006-2011

earth

MCR: 235 Sites, 23011-2014

EarthScope MT TA:

- Large spatial scale
- > Areal (as opposed to linear) data coverage
- > Wide site spacing

Probably the first MT array of this sort

MT Component

• MT component of SinoProbe

SinoProbe-01 PI: Prof. Wei Wenbo

China University of Geosciences (Beijing)

20°

MT: some basics, including the standard "2D paradigm"

Some results from the MT-TA array + 3D inversion approach

 \rightarrow broad view of high conductivity layers in the lower crust and uppermost mantle

→ large aperture allows resolution of deeper later variations in resistivity (LAB and beyond)

→ conductive sutures record continental assembly

Electrical conductivity of the Earth: why should we care?

- Most rock-forming minerals are highly resistive at crustal, upper mantle P-T conditions
- Bulk rock conductivity is strongly influenced by the presence and connectivity of fluids (partial melt, water, CO2), volatiles, and a few conductive minerals (sulfides, carbon)

Texture/interconnection of conductive phase very important (e.g., to anisotropy)

Solid-state conduction in the mantle: thermally activated

Three conduction

mechanisms in Olivine:

→Small polaron (Fe²⁺→Fe³⁺)

 \rightarrow H⁺ (water)

→ionic

Small amounts of water can increase conductivity of mantle minerals dramatically

Some evidence for anisotropy, but results between labs are not completely consistent

High P-T experiments with hydrous minerals are hard to do!

Magnetotellurics (MT)

External magnetic field variations

f > 1 Hz : global lightning
f < 1 Hz : Solar wind-magnetosphere

EM fields diffuse into Earth

Deeper penetration for lower frequencies, more resistive materials

MT: Measure time variations of magnetic and electric field on Earth's surface

MT: Measure time variations of magnetic and electric field on Earth's surface

Estimate transfer function relating horizontal magnetic and electric fields

Frequency Domain 2x2 Impedance Tensor

Complex Impedance Tensor

→For 2D case (preferred geologic strike) the tensor will have the special form

$$\begin{bmatrix} E_x \\ E_y \end{bmatrix} = \begin{bmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{bmatrix} \begin{bmatrix} B_x \\ B_y \end{bmatrix}$$

When expressed in the proper coordinate system ... problem decouples into two "modes" ... TE and TM

Frequency dependence of impedance amplitude, phase → depth dependence of Earth conductivity

Two-dimensional Earth—e.g., conductive fault zone

Two-dimensional Earth—e.g., conductive fault zone

Two-dimensional Earth—effect of shallow near-surface

Two-dimensional Earth—effect of shallow near-surface

More realistically: even if deep geoelectric structure is 2D, near surface complications would be expected to have a more complicated (3D) geometry

→ Apparent resisitivites for both modes might be distorted at some sites

Two-dimensional interpretation of MT profile data

correct coordinate system: only off diagonal impedance components are non-zero → "TE and TM modes"

- analyze impedance tensors—find "most 2D" strike direction
- assess near surface effects
- invert for resistivity (emphasize

TM, maybe TE phase)

High resolution MT *profiles* across the San Andreas Fault (Unsworth, Bedrosian, et al.)

Θ 40° 03′ 39.53″ N

θ -110° 17'9.6215999" Ν 33' 6.6852" Ν - λ 35° 58' 26.70

MT TA data from 2006-20011

- 325 stations
- ~70 km site spacing
- T = 10-20,000s

earth scope www.earthscope.org

9 40° 03′ 39.53″ N A

MT TA data from 2006-20011

- 325 stations
- ~70 km site spacing
- T = 10-20,000s

Spans an area of complex and varied geology:

- Subduction zone and arc
- Extensive magmatism
- Extensional Basin and Range
- Stable cratonic interior

0 40° 03′ 39.53″ Ν

θ -110° 17'9.6215999"N - A 33' 6.6852"N - λ 35° 58'.26.70

MT TA data from 2006-20011

- 325 stations
- ~70 km site spacing
- T = 10-20,000s

Spans an area of complex and varied geology:

- Subduction zone and arc
- Extensive magmatism
- Extensional Basin and Range
- Stable cratonic interior

(How) is this going to work?

Interpolated maps of apparent resistivity and phase

A dataset that demands 3D interpretation

3-D Inversion of MT data →Just becoming practical → Still have much to learn ...

- Inversion Code: Parallelized version of ModEM (Egbert and Kelbert, 2012)
- Invert everything: Full impedance (Z) and vertical magnetic transfer functions (T) for 325 stations, omitting ~3% of data
- Error floors: 5% of $|Z_{xy}Z_x|^{1/2}$ for Z, constant 0.03 for T
- Just directly model near-surface (static distortion) effects

•Many (> 20) inversion runs with different grids, prior models, regularization + limited resolution/hypothesis testing

high phase→ conductivity increasing (near penetration depth)

40

-110

30

-115

10

20

Longitude

38

50

Phase (Deg.)

-125

70

60

-120

90

80

-115

Longitude

-110

38

-125

-120

Representative cross-section from preferred 3-D conductivity model

¹⁰ Resistivity (Ω.m)

1000

Boundaries:

moho: receiver functions,

Alan Lavender, pers. comm.

Top of Juan de Fuca slab:

- C1 : conductive layer near moho
- C2 : aesthenospheric Mantle
- **R1 : resistive oceanic lithosphere**
- **R2** : resistive cratons

1

McCrory et al. (2012) > LAB: schematic

Cascade Volcanic Arc

Cascade Volcanic Arc

Basin and range and Snake River Plain

→ Truncated on NW by Klamath-Blue Mts Lineamant

Cascade Volcanic Arc

Basin and range and Snake River Plain

→ Truncated on NW by Klamath-Blue Mts Lineamant → Highest conductivities beneath Eastern SRP

Most plausible explanation: melt and/or magmatic/ subduction related fluids (e.g., Wannamaker et al., 1997, 2008)

Most plausible explanation: melt and/or magmatic/ subduction related fluids (e.g., Wannamaker et al., 1997, 2008)

High conductivity extends into mantle

Resistive lithosphere beneath cratons (Medicine Hat and Wyoming) + Columbia Plateau, Colorado Plateau

High conductivity extends into mantle

Resistive lithosphere beneath cratons (Medicine Hat and Wyoming) + Columbia Plateau, Colorado Plateau
 Resistive and conductive stripes, widths comparable to site spacing

Do conductive stripes represent finer scale anisotropy?

MT data (70 km spacing) can' t distinguish scale of anisotropy

resistive

conductive

Direction of maximum conductivity matches fast axis of seismic anisotropy

conductive anisotropy probably cannot be explained by LPO (Poe et al, 2010: relatively weak effect of water on conductivity; highest conductivities for 010 axis)

Archean Cratons and Proterozoic sutures

after Whitmeyer and Karlstrom (2007)

SABC CA, GFTZ and Cheyenne Belt sutures, along with Wyoming, Medicine hat Block and Hearne cratons.

SABC CA, GFTZ and Cheyenne Belt sutures, along with Wyoming, Medicine hat Block and Hearne cratons.

Adiabatic Geotherm and Hydrated Mantle

Divide domain into patches which are relatively homongeneous at depth

Solid – active west Dashed– more stable interior

Compare average 1D resistivity profiles between regions

Adiabatic Geotherm and Hydrated Mantle

- •Very thin lithospheric mantle
- Shallow aesthenosphere is dry
- •Below ~250 km a few hundred ppm H_2O

- Thick cold lithospheric mantle
 - generally hydrated aesthenosphere

Adiabatic Geotherm and Hydrated Mantle

Back Arc: variable along arc ... "fingers" of high conductivity... connecting into aesthenospheric high conductivity layer?

Second EarthScope MT Footprint: First Mid-Continent Rift 3D inversion results

- **#** of sites: 226
- # of periods: 26
- Periods range: 12 sec 7000 sec
- # of iteration: 134
- RMS: 2.0
- Error floor: 5% * sqrt(| Zxy*Zyx|)
- Prior model: 100 Ohm.m half space
- Grid size: 20 km; 98 X 83 X 43

B. Yang, G. Egbert, N. Meqbel, A. Kelbert

Area of patchy high conductivity in the lower crust (extending into lithospheric mantle) coincides with location of an oceanic arc accreted to the Superior craton at ~1.8-1.9 Ga

Whitemeyer and Karlstrom, 2007

Pacific Northwest

Mid-Continent Rift

High conductivity near moho (lower crust): ubiquitous in tectonically active areas, but not stable

Possible Artifacts: Conductive Features Near Array Edges

... Full coverage of US is warranted!

MT-TA array + 3D inversion approach seems to work quite well!

→broad view of high conductivity layers in the lower crust and uppermost mantle

→ large aperture allows resolution of deeper later variations in resistivity (LAB and beyond)

→ conductive sutures record continental assembly

EMScope: MT component of USArray Transportable array plans (2014-2018)

