Lessons Learned from 24 Years of Collecting and Processing Passive Seismic Array Data Gary L. Pavlis Department of Geological Sciences Indiana University ### My History ### Data/Desktop - * Topics are inseparable -> Cyberinfrastructure - * Changes in computing in 24 years of my title - * Desktop speed increased by more than 1000 - * Supercomputers today max ~10¹³ flops - * HPC storage systems ~10¹⁶ bytes - * Important quote: David Hale at first USArray Data Processing workshop: "Factors of 1000 are hard on assumptions" ### Corollaries of David Hale quote - * Computational expedience is a hidden assumption of many methods we use (choice made decades ago lost in evolutionary development) - * High performance computing then is desktop now - * We all need to "think outside the box" and seek out these hidden assumptions ### Example of the issues: IRIS Data Model Functional but (mostly) dated MOSTLY BROKEN ## Why can you assert data processing infrastructure is broken? - * USArray Data Processing course instructor yearly since 2009 - * We've collected best use cases we can find - * I know what you and your students do - * If you process data with a commercial CMP processing system like ProMAX you understand the difference ### The difference is like this What we use Commercial CMP systems ## Why #### What we use - Irregular maintenance - Clashing conceptual models for data handling - * Research code - Full of archaic stuff like SAC and duct tape home brew shell scripts - * Poverty in comparison to any major oil and gas company #### Commercial CMP systems - * Well maintained - * Time is money - Always kept state-of-the-art - Megacorporations with deep pockets and budgets bigger than many countries ### A Key Assertion - * The Cyberinfrastructure of today is completely analogous to the state of seismic instrumentation in 1980 pre-IRIS - * Balkanized - * Huge energy wasted by duplication of effort - * Largest bottleneck to progress in the field today ## What we need: A working data processing framework - * Efficient data flow system - * Abstracts and handle multiple common seismological objects - * Passes data objects through system without intermediate disk files - * System for clean handling of auxiliary data - * "Metadata" (What we used to call trace headers) - * Processing algorithm input parameters (Fill in forms for parameters) - * System that knows something about parallel computing - * Clean API - Maximize community developments - * API to packages people use (Matlab, Antelope, ObsPy, and (yes) SAC) - * (Maybe) Simplified "flow builder" ala Promax #### How to do this? - * We need to do something about this and stop just talking about it - * Earthcube will not be solving this problem for us - * Form a technical working group to develop a development plan - * Put in at least some seed money to get this moving ## DIRT 1: Telemetry Brief, IRIS-centric History Lesson ### Key Points on History - * IRIS Joint Seismic Program role in TA performance needs to be remembered - * Seismology has been a leader in digital sensor network developments - * We are opportunists that adapt to changing technologies well ## Plus and Minus of Telemetry compare to standalone (PASSCAL) mode #### Positive - Data quality - * Data recovery - * Faster data turnaround - * Can make experiment cheaper #### Negative - Longer station install times - Greater complexity - * Operations - * Data handling - * PI and team need more background education - * 51-55 of 70 stations use cell phone telemetry at different phases - * Data recovery > 99% on telemetry stations - Standalones around 97% recovery - * "Good" data MUCH higher with telemetry - * 20%+ Guralp 3T failure rates exaggerated difference - * Outside failures, mass position problems rare with telemetry common otherwise - * Saved us A TON of money - * HUGE to us because USArray paid the cell bills - * Cost analysis shows we would still have saved money had we paid the cell bill - * Especially cost effective if you count difference in lost data ### Dirt 2: BB sensors in Dirt ## Fact: LP noise is dominated by tilt ## This is an old, unsolved problem My (now 30 year old) daughter ## Some different approaches to BB sensor deployments ## Concrete Pad – sensor wall separated from pad ## FA Vaults: double walled sensor in dirt ### What we sort of know empirically - Nothing beats a rock site in a deep mine for LP noise - * Cement a concrete pad to rock and the details matter little - In dirt results are wildly different and the devil is in the details - * FA vaults, postholes, and direct burial in a plastic bag are equivalent - * Massive containers in dirt like TA vaults help at 10 db scale or more - * Older work demonstrated separation of concrete pad from walls of enclosure reduces LP noise somewhat forgotten ## Why does this happen? - * What we know - Soil is unstable (it is why you can put a shovel in it) - * Lots of processes tilt a sensor in the recording band of bb sensors - * What we don't know is the relative importance of - * Thermal stress interaction with soil heterogeneity - * Atmospheric pressure fluctuation interactions with soil heterogeneity - Wetting/drying induced stresses - * Settling - * Other processes? ## Dissemination – 3D/4D visualization needs to become the norm - * Understanding 3D problems is a key element to advancing many questions in our science - * Modeling 3D processes becoming common - * Literature is full of misconceptions from 2D thinking applied to 4D problems - * 3D vis capabilities possible today on any reasonable hardware - * Publications are now close to 100% electronic ## Late 1990s 3D visualization - \$50,000 hardware/sofware system ## 3D Vis circa 2014- \$1000 hardware/ software system ### Summary - * Dirt - Telemetry use it is you can - Basic research needed to understand processes that create LP tilt noise on broadbands - * Data/Docktop → Cyberinfrastructure - * Data processing infrastructure is THE biggest barrier to progress in our field today - * Think outside the box implicit assumptions of almost every processing algorithm we use should be questioned - * Dissemination - * 3D visualization needs to become universal - * Digital artifacts need to become part of all publications ## The Way I View Too Many Data Processing Tasks Today http://funnothingmore.blogspot.com/2012/10/impossible-photo-assignment.html ## Tripod – Selwyn Sacks