Lessons Learned from 24 Years of Collecting and Processing Passive Seismic Array Data

Gary L. Pavlis

Department of Geological Sciences

Indiana University

My History

Data/Desktop

- * Topics are inseparable -> Cyberinfrastructure
- * Changes in computing in 24 years of my title
 - * Desktop speed increased by more than 1000
 - * Supercomputers today max ~10¹³ flops
 - * HPC storage systems ~10¹⁶ bytes
- * Important quote: David Hale at first USArray Data Processing workshop: "Factors of 1000 are hard on assumptions"

Corollaries of David Hale quote

- * Computational expedience is a hidden assumption of many methods we use (choice made decades ago lost in evolutionary development)
- * High performance computing then is desktop now
- * We all need to "think outside the box" and seek out these hidden assumptions

Example of the issues: IRIS Data Model

Functional but (mostly) dated

MOSTLY BROKEN

Why can you assert data processing infrastructure is broken?

- * USArray Data Processing course instructor yearly since 2009
 - * We've collected best use cases we can find
 - * I know what you and your students do
- * If you process data with a commercial CMP processing system like ProMAX you understand the difference

The difference is like this

What we use

Commercial CMP systems

Why

What we use

- Irregular maintenance
- Clashing conceptual models for data handling
- * Research code
- Full of archaic stuff like SAC and duct tape home brew shell scripts
- * Poverty in comparison to any major oil and gas company

Commercial CMP systems

- * Well maintained
- * Time is money
- Always kept state-of-the-art
- Megacorporations with deep pockets and budgets bigger than many countries

A Key Assertion

- * The Cyberinfrastructure of today is completely analogous to the state of seismic instrumentation in 1980 pre-IRIS
 - * Balkanized
 - * Huge energy wasted by duplication of effort
 - * Largest bottleneck to progress in the field today

What we need: A working data processing framework

- * Efficient data flow system
 - * Abstracts and handle multiple common seismological objects
 - * Passes data objects through system without intermediate disk files
- * System for clean handling of auxiliary data
 - * "Metadata" (What we used to call trace headers)
 - * Processing algorithm input parameters (Fill in forms for parameters)
- * System that knows something about parallel computing
- * Clean API
 - Maximize community developments
 - * API to packages people use (Matlab, Antelope, ObsPy, and (yes) SAC)
- * (Maybe) Simplified "flow builder" ala Promax

How to do this?

- * We need to do something about this and stop just talking about it
- * Earthcube will not be solving this problem for us
- * Form a technical working group to develop a development plan
- * Put in at least some seed money to get this moving

DIRT 1: Telemetry Brief, IRIS-centric History Lesson

Key Points on History

- * IRIS Joint Seismic Program role in TA performance needs to be remembered
- * Seismology has been a leader in digital sensor network developments
- * We are opportunists that adapt to changing technologies well

Plus and Minus of Telemetry compare to standalone (PASSCAL) mode

Positive

- Data quality
- * Data recovery
- * Faster data turnaround
- * Can make experiment cheaper

Negative

- Longer station install times
- Greater complexity
 - * Operations
 - * Data handling
- * PI and team need more background education

- * 51-55 of 70 stations use cell phone telemetry at different phases
 - * Data recovery > 99% on telemetry stations
 - Standalones around 97% recovery
 - * "Good" data MUCH higher with telemetry
 - * 20%+ Guralp 3T failure rates exaggerated difference
 - * Outside failures, mass position problems rare with telemetry common otherwise
- * Saved us A TON of money
 - * HUGE to us because USArray paid the cell bills
 - * Cost analysis shows we would still have saved money had we paid the cell bill
 - * Especially cost effective if you count difference in lost data

Dirt 2: BB sensors in Dirt

Fact: LP noise is dominated by tilt

This is an old, unsolved problem

My (now 30 year old) daughter

Some different approaches to BB sensor deployments

Concrete Pad – sensor wall separated from pad

FA Vaults: double walled sensor in dirt

What we sort of know empirically

- Nothing beats a rock site in a deep mine for LP noise
- * Cement a concrete pad to rock and the details matter little
- In dirt results are wildly different and the devil is in the details
 - * FA vaults, postholes, and direct burial in a plastic bag are equivalent
 - * Massive containers in dirt like TA vaults help at 10 db scale or more
 - * Older work demonstrated separation of concrete pad from walls of enclosure reduces LP noise somewhat forgotten

Why does this happen?

- * What we know
 - Soil is unstable (it is why you can put a shovel in it)
 - * Lots of processes tilt a sensor in the recording band of bb sensors
- * What we don't know is the relative importance of
 - * Thermal stress interaction with soil heterogeneity
 - * Atmospheric pressure fluctuation interactions with soil heterogeneity
 - Wetting/drying induced stresses
 - * Settling
 - * Other processes?

Dissemination – 3D/4D visualization needs to become the norm

- * Understanding 3D problems is a key element to advancing many questions in our science
 - * Modeling 3D processes becoming common
 - * Literature is full of misconceptions from 2D thinking applied to 4D problems
- * 3D vis capabilities possible today on any reasonable hardware
- * Publications are now close to 100% electronic

Late 1990s 3D visualization - \$50,000 hardware/sofware system

3D Vis circa 2014- \$1000 hardware/ software system

Summary

- * Dirt
 - Telemetry use it is you can
 - Basic research needed to understand processes that create LP tilt noise on broadbands
- * Data/Docktop → Cyberinfrastructure
 - * Data processing infrastructure is THE biggest barrier to progress in our field today
 - * Think outside the box implicit assumptions of almost every processing algorithm we use should be questioned
- * Dissemination
 - * 3D visualization needs to become universal
 - * Digital artifacts need to become part of all publications

The Way I View Too Many Data Processing Tasks Today

http://funnothingmore.blogspot.com/2012/10/impossible-photo-assignment.html

Tripod – Selwyn Sacks

