## Faulting and Deformation Processes



Our task - Seed discussion about future directions in understanding earthquakes, seismic cycle, fault rheology, induced seismicity \& volcanoes

## Discussion via

## tantalizing examples Where are we now?

## Motivate Using Subduction Megathrusts A sampling of important intertwined questions

- Do major seismogenic "asperities" only slip seismically?
- Role of conditional stability (e.g., near trench)?
- Do creeping segments only creep?
- Is pre-seismic creep (EQ swarms?) ubiquitous?
- What are the relationships between post-seismic creep, transients, tremor and seismicity (rate, repeat intervals, location...)?
- What happens immediately after a large earthquake - aseismic slip pulses?
- What is the role of off-fault damage?
- Can we constrain the role of fluids as a function of space and time?
- Is there a relationship between short term behavior and geologic evolution?


## Complexity of slip behavior on a single fault

C. Along strike variability in behavior
C. Little overlap between co-seismic / post-seismic / aseismic

C- Aftershocks surround the aseismic patch

न Aseismic transient event downdip of main rupture superimposed on post-seismic after slip

- Megathrust below the peninsula appears "aseismic" - coincidental?
$2005 \mathrm{M}_{\mathrm{w}}$ 8.7 Nias, Sumatra


Note importance of joint geodetic/seismic inversions

Co-seismic/post-seismic

- Slip heterogeneous in space
- Negligible (?) spatial overlap

2007 Mw 8.0 Pisco, Peru


2003 M w 8.3 Tokachi-Oki, Japan



## 2011 Tohoku-Oki, Japan

Co-seismic slip:

- Amplitude and location of peak slip, frequency dependence?
- Relationship to post-/interseismic?

Post-seismic afterslip:

- Total time $=1.5$ years
- Mutually exclusive time windows of increasing duration using a fixed color scale



## Mapping effective seafloor displacement using just tsunami observations



## High resolution imaging of distant high frequency seismic radiation with large and dense seismic arrays

2011 Tohoku-Oki earthquake as seen by USArray data


Post-seismic (1.5 yrs)
Inter-seismic


## What about shorter time scales?

Decay and expansion of the early aftershock activity following the 2011, Mw 9.0 Tohoku earthquake

Geodesy: Pattern of afterslip is more or less constant (?) but time scales are really days to years.

Seismology: Rapid spatial expansion of after-slip over short time scales?


Lengliné et al., 2012.
For application to Parkfield, see: Peng and Zhao, 2009

## Slip transients and Tremor: Cascadia




## Cascadia 2010 SSE: Slip rate + tremor



Analysis and models: Bryan Riel

## Issues

- Controls on location and temporal evolution? Role of fluids? Ubiquitous, yes/no/why?
- Relationship to regions of big EQ and eventual post-seismic deformation?

合 - Relationship to forearc/slab structure?

## Approach

- Detect/reconstruct/model transient ground deformation in GPS time series due to SSE using sparsity-based approaches
- Time-dependent slip using Network Inversion Filter: Segall and Matthews (1997)
- Slab interface: McCrory et al. (2004)
- Tremor epicenter locations: Pacific Northwest Seismic Network (http://www.pnsn.org/tremor)


## Cascadia 2010 SSE: Slip rate + tremor



Analysis and models: Bryan Riel

## Issues

- Controls on location and temporal evolution? Role of fluids? Ubiquitous, yes/no/why?
- Relationship to regions of big EQ and eventual post-seismic deformation?
领 Relationship to forearc/slab structure?


## Approach

- Detect/reconstruct/model transient ground deformation in GPS time series due to SSE using sparsity-based approaches
- Time-dependent slip using Network Inversion Filter: Segall and Matthews (1997)
- Slab interface: McCrory et al. (2004)
- Tremor epicenter locations: Pacific Northwest Seismic Network (http://www.pnsn.org/tremor)


## Hydrologic control of forearc strength and

 seismicity in the Costa Rican subduction zone Audet and Schwartz, 2013

## Caveat Emptor

## Structure of the Nankai SZ



Sakaguchi et al., 2011

Complex Faulting on the N. Japan Megathurst



Zhan et al., 2012

Trench Parallel Gravity Anomaly (TPGA)

TPGA < 0 in region of large earthquakes


Song \& Simons, 2003 Also Wells et al., 2003

- Prediction failed
- Low/high stress drop events different?



## Going Forwards: Assumptions (will need some effort)

- Existing GPS/seismic networks (particularly those we are responsible for) must continue to exist and be maintained
- USArray in Alaska (most active region in the U.S.) exists and a subset is permanent
- Sub-weekly InSAR data easily available to all



## A Global Perspective

## Increasing the number of natural laboratories/examples


http://earthquake.usgs.gov/earthquakes/world/seismicity_maps/world.pdf

Absolute location via GPS

Record P waves of foreshocks/aftershocks

- Track relative locations via sending/receiving chirps
- Surface to transmit data (say every week)
- Relative locations become absolute

Multimermaids
location via GPS
located with chirps


## Formally or informally, we are engaged in the inverse problem of improving our image of fault slip:

- Refine spatial and temporal resolution
- Describe both what we know \& don't know
- Go beyond 1st order estimates

What we thought we knew


- Rake
- Magnitude

Improve:

- Fault geometry
- Elastic structure
- Theory \& Computation
- "Physical Regularization"


## Motivate Using Subduction Megathrusts A sampling of important intertwined questions

- Do major seismogenic "asperities" only slip seismically?
- Role of conditional stability (e.g., near trench)?
- Do creeping segments only creep?
- Is pre-seismic creep (EQ swarms?) ubiquitous?
- What are the relationships between post-seismic creep, transients, tremor and seismicity (rate, repeat intervals, location...)?
- What happens immediately after a large earthquake - aseismic slip pulses?
- What is the role of off-fault damage?
- Can we constrain the role of fluids as a function of space and time?



## 1 sample/sec GPS

- Is there a relationship between short term behavior and geologic evolution?


## Assumptions

- Existing GPS/seismic networks (particularly those we are responsible for) will continue to exist and be maintained
- USArray in Alaska (most active region in the U.S.) exists and a subset is permanent
- Sub-weekly InSAR data available



## Recommendations

- Ensure previous assumptions hold - if not, jettison what follows!
- Large-N arrays to capture spatial and temporal variations in fault zone and broad scale structure (faults, damage zones, bulk...)
- Suites of offshore observatories for megathrust related questions
- Rapid response capabilities to chase suspicious foreshock \& big aftershocks sequences, volcanic crises
- Precise locations \& mechanisms
- Lower magnitude thresholds
- Increased resolution of big events
- Improved analysis tools
- Data processing
- Forward/inverse modeling
- Common workbench environment
- Access to sufficient compute power at different scales using different strategies
- Consider decoupling observatories and mechanism for funding analysis in order to ensure vibrant research support that is not overly concerned with consensus vision

