Magmatic Processes Paul Segall (Stanford)

Volcano Seismicity and Tremor

Seismic Imaging

V_{SH}

InSAR

Data: grav

not to scale

Geodetic + Seismic

Model based joint inversion

Chamber

echarge O

Geodetic Monitoring

Key Scientific Questions

• How is magma stored in the crust? geometry, volume and physical state of crustal melts.

 Can we move from empirical to physics-based eruption forecasting?

• How to predict not only that an eruption is likely, but also eruptive style?

• Can we predict the duration and size of an eruption once its underway?

• Link different data types: deformation, seismic, gravity, gas, petrology, tomography, ...

Imaging a Magmatic Sill Complex Beneath Toba

K. Jaxybulatov et al. 2014, A large magmatic sill complex beneath the Toba caldera, Science

Extension continued following first explosion, forecasting that eruption would continue

Cervelli et al, GRL 2006

40 km Long Dike Intrusion in Iceland

Dike Deformation and Seismicity

Segall et al, JGR (2013)

Seismicity Patterns

June 2007 "Fathers Day" Kilauea Intrusion

Segall et al, JGR (2013)

Intrusion into Rift Zone

Long Valley 2014 swarm

• Max magnitude: 2.8

468 catalog earthquakes

-> 2468 precisely located events after processing

Dave Shelly, AGU 2014

Repeating Quakes and Gliding Tremor

Gliding Harmonic Tremor eruption

Galapagos Uplift, Trapdoor Faulting, & Eruption

Mount St. Helens: 2004-2008

Mount St Helens Dome Forming Eruption 2004-2008

JRO1 Radial Time Series

Lisowski et al. [2008]

Physics-based Volcano Deformation

Key model parameters

earth scope

NAVCC

• Chamber volume, initial overpressure, aspect ratio, volatile content, conduit length, chamber influx, and frictional plug parameters

Key assumptions

- Radial symmetry, 1D conduit
- Newtonian rheology
- No gas loss from fluid conduit
- Fixed crystallization depth

Anderson and Segall, Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes: Model development and analysis JGR 2011

Anderson and Segall, JGR 2013

Grimsvotn GPS and Erupted Flux from Plume Height

GPS Displacements

Hreinsdóttir et al, Volcanic plume height correlated with magma-pressure change at Grímsvötn Volcano, Iceland; 2014 Nature

Grimsvotn GPS and Inferred Flux

Hreinsdóttir et al, 2014

Normalized time

Physics-based Monte Carlo Forecasting

• Forecast based on knowledge of the system and all existing data.

Axial Volcano

2.4 meter subsidence April 2015

Bill Chadwick

Recommendations

• Long term monitoring of volcanic systems required to record intrusive and eruptive processes.

• Advances in methodology (e.g. ambient noise imaging, precise event location, 4D inversion) require spatially and temporally dense data sets.

• Joint inversion of seismicity and deformation is feasible and potentially powerful in forecasting eruptions.

• Physics based models provide key links between different data types and *may* allow for dynamical forecasts.

Continuous Amplitude Imaging

Taisne et al, Imaging the dynamics of magma propagation using radiated seismic intensity, GRL, 2011

Dike Seismicity

Dike Seismicity

Monte Carlo inversion

earth scope