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Early Observations

Early observations

Since 1880 the development of 130° 1357 140° 145°
geodetic survey allowed ‘
detailed observations based on:

o Land survey, repeating
precise first order
levelling.

@ Mareographical
observations.

o Geophomorgical studies
on the sea shore and
marine terraces.
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Recognizing three main regimes (prior to Plate Tectonics):
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(From: Tsuboi 1932, Imamura, 1932, Miyabe 1942, Okada 1961,

Fitch and Scholz, 1971; Kanamori, 1973)
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Observations in Japan

Recognizing three main regimes:
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Observations in Japan
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Map of Geodetic observations and profiles
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Observations in Japan

Vertical displacement on land
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Observations in Japan

Vertical displacement on land
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Observations in Japan: Summary

Pre-seismic

{ﬂl'!“.”U‘W'. i Co-seismic

} I '
t

il "\'\"I\Ilum I

1947 - 1964

| 1 Post-seismic
s‘-i" P
M‘. . ! 1929 - 1964
LTS e— . . .
. ;o Co-seismic +
b Post-seismic




Early Observations

Observations in Japan: Summary

e Pre-seismic
] A; .
] {ﬂl'!“.””‘”‘@'- bz Co-seismic
il "\'\"I\Ilum i
3 i Post-seismic
ht —
RS
an " . .
P 1 Co-seismic +
R Post-seismic

(1) Pre-seismic is the

inverse of Post-seismic + Co-seismic



Early Observations

Observations in Japan: Summary
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Observations in Japan: Summary
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(2) Pre-seismic displ. rate x Recurrence time ~ Co-seismic displ.
(3) Rebound theory: Pre-seismic = Load , Co-seismic = Unload
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Plate Tectonic

Already in 1910, Reid proposed the rebound theory, but required
the source of energy to load the crust.

Once Plate Tectonic became accepted, the source of energy was
clear. The model was simple:
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(a) Steady-state, (b) Inter-seismic , (c) Co-seismic
(From Fitch and Scholz, 1971)
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Physical model: Back-Slip Model: widely used

(Savage J. C., 1983, JGR, 88, 4984-4996)
Main principle:

Steady state (no net displacement)

+ Suplemental Solution
(Coseismic™1)

= Interseismic

Back-Slip Model: Interseismic = Inverse of Coseismic
or
Coseismic + Interseismic = Steady state (no surface displacement)

Is this correct ? We don’t think so!
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Steady state — net displacement !
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Suplemental Solution is unrealistic

if plate subducts,
requires slip in lower interface,
and is not considered.
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Better Solution: "Plate Model”
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Plate Model

Sieh et al 1999

Crustal deformation at the Sumatran Subduction Zone revealed by
coral rings, GRL 1999
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Kanda & Simons 2010, Elastic Plate Model

Elastic Subducting Plate Model (ESPM)
(Kanda and Simons, 2010)

(a ) Steady State ., (b)rlnterselsmic'
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Plate Model

Predicted displacements at the surface

Models

Vertical displacement

Horizontal displacement

4 2 4 8 0 1z

In the limit when H — 0 : PM — BSM.
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Plate Model

For interseismic period: we consider a plate model
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Plate Model

Plate Model

or a back-slip model
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Plate Model

Plate Model

Comparison between back-slip model and plate model
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Plate Model

Conceptual differences

Interseismic regime represents the earthquake Loading Process.

@ In the Back-Slip Model one describes the motion only on the
locking zone. This can not represent the loading process,
therefore it is not reasonable.

@ In the Plate Model one describes the motion on the whole
plate. This is reasonable. It implies that with succesfull
inversions, we can learn a lot of the movement of the whole
plate. The role of the motion of the lower interface of the slab
is important. So far, the interest has been only on the upper
interface.
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Implications on Seismic Coupli

Geodetic Seismic Coupling

o Geodetic seismic coupling is defined as
8sC = (Vplate - Vslide)/Vplate-

@ In BSM, vyjiqe is not consistently defined, because it is a
reverse velocity, or is an image solution”, it is not real.

@ In PM, vgjige is well defined, represents the slip in the coupling
zone.
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Seismic Coupling in Chile

Inverse problem to define each of the parameters: slip on each part
of upper and lower interfaces, plate thickness, geometry of plate
movement.

N Chilean Subduction Y cpsstetion
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> displacement
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Inversion scheme

Observations

Observaciones GPS en estaciones
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Inversion scheme

Simple parametrization

Deslizamiento
libre

Interfaz Nazca-Sudamericana

Interfaz inferior de Nazca




Coupling result for Maule Area

Sensitivity on slab thickness: from 5-100 km.
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Maule area: Coupling compared with Coseismic

Resultade de Inversa: Acoplamiento eon SM
| J

30*s
0.90
32°s 075
0.60
34°5
e
€
3
045 E
L]
=1
o
o
=
36*S
0.30
0.15
38°5
0.00




Coupling for Chile

Resultado g{g Inversa: Acoplamiento sismico con SM todo Chile
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Coupling related to volcanoes ?

Volcanes en Chile

Resultado de Inversa: Acoplamiento sismica con SM tado Chile
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Conclusions

O To exploit Quality data, we need good models. Back-Slip
Model, which is widely used, is a first approximation, but it
can easily be improved.

@ With Plate Model, we can retrieve important information from
the motion of the complete slab.

© Use of Plate Model allows determination of several
parameters: plate thickness, depth of upper and lower
transition zones, amount of creep, thickness of lower plate
boundary zone.

© Muchas gracias !
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