Assessing rates, styles and magnitudes of
permanent upper plate deformation

e How is permanent deformation in the upper plate produced? During which portion
of the ‘seismic cycle'?

e \What proportion of this strain comes from far-field stresses versus subduction zone
convergence”?

e \What parameters control where permanent deformation is located and the
kKinematics of this deformation?

e \What role does bathymetry/roughness on the subducting plate have on upper
plate deformation?

e \What percentage of the GPS velocity field represents elastic versus permanent
deformation?

Assessing these questions often requires information about
deformation processes occurring on intermediate (103-105 yr)
timescales and methods in tectonic geomorphology and
paleoseismology.
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Figure 8. Idealized sequence of forearc vertical motions caused by impinging bathymetric features.

(a) Bathymetric feature approaching the forearc. The peripheral slope of the seamount begins to U p | ift in reS po n Se tO

subduct and raise the edge of the forearc. (b) Upper slopes of the impinging object that have lifted the
| seamount subduction.
Taylor et al. 2005, Tectonics



Example 2. Elucidating surface-rupturing seismogenic crustal faults.
Targeted by lidar, tield mapping and paleoseismic trenching yield slip
history and recurrence interval of active forearc faults in Cascadia. Here,
GNSS and seismic network is not sufficient to identify strain accumulating
on crustal faults that rupture over long (>1,000 ka) intervals such as the

Seattle Fault.
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Example 3. Landscape morphology,
topography, can constrain deformation rates
above blind or buried structures.
Topography, patterns of incision, erosion used
to infer spatial distribution of rock uplift rates —
> |location, geometry and kinematics of blind
faults such as beneath Mt Tamalpais near San
Andreas Fault.
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What datasets are needed for a SZO?

eHigh resolution topography - Airborne lidar

eL-rosion rates across various time scales using a
variety of systems (cosmogenic nuclide dating,
low temperature thermochronology)

eKnowledge about climate, sedimentation rates,
depositional settings

eAges of key deformed or uplifted surfaces, etc.

eDetailed field work, tectonic-geomorphic
mapping, paleoseismic trenching



