

A Seismically Sound Foundation: Reference Models and Datasets

Ved Lekic, Pritwiraj Moulik, Barbara Romanowicz

Reference Dataset Working Group: Eric Debayle, Arwen Deuss, Göran Ekström, Sergei Lebedev, Guy Masters, Jeroen Ritsema, Karin Sigloch

Contributing Authors: Eric Beucler, Scott Burdick, Stephanie Durand, Tak Ho, Paula Koelemeijer, Zhitu Ma, Keith Priestley, Andrew Schaeffer, Jeannot Trampert

Evolution of global models

Why not existing 1D models?

- Existing 1D reference models: PREM (Dziewonski and Anderson, 1981), ak135 (Kennett et al., 1995), IASP91 (Kennett and Engdahl, 1991).
- Uneven distribution of earthquakes and seismometers means that:
 - Models that fit travel times as much as possible (e.g. ak135, IASP91) are not true global averages
 - → biased toward continental structure, and should be used with caution;
 - Models that attempt an unbiased global average (e.g. PREM), cannot fit travel times as successfully.
- A 3D reference model could fit data better without biasing our view of the "average" Earth.

Importance of 1D reference models

- Irving et al. (in press at Sci. Adv.) revisit 1D reference model of outer core:
 - Equation-of-state parameterization
 - Model-space search approach → improved quantification of uncertainty
 - Expanded dataset of normal mode center frequencies compared to PREM
- EPOC model fits mode data better than PREM
- See poster A1

Importance of 1D reference models

Depth (km)

d InVs (%

Large scale mantle structure

- Different depths in the mantle have distinct spatial and spectral characteristics in long period Vs global tomographic models:
- Heterosphere upper 250 km where tectonic signals dominate
- Transition Zone signal of slabs in Western Pacific and slow anomalies related to hot spots
- Mid mantle smaller amplitudes and lengthscales of heterogeneity
- Lower-most mantle dominance of degree 2 structure consisting of pair of antipodal LLSVPs surrounded by a ring of faster-than-average Vs.

Reliability of tomographic models

- The large-scale structure of the mantle is robust
- Models similar throughout the uppermost and lower mantle
 - Regions with strongest lateral heterogeneity also have strongest intermodel consistency
- Inter-model consistency motivates new analyses of the models themselves

Standard Deviation of Intermodel Correlations

A Community Effort

- Community workgroups advise, oversee and evaluate the reference model development and compilation / reconciliation of reference datasets
- Pritwiraj Moulik carries out the primary tasks of the REM-3D project, together with Ved Lekic and Barbara Romanowicz
- Reference Dataset WG: Surface wave dispersion, normal mode frequencies and splitting, body wave travel times
- Reference Model WG: Physical parameterization (smooth and regionalized versions), depths of major discontinuities (410 and 660), and scaling factors for parameters about which consensus does not exist (e.g. Q).

		-	
TYPE	DATA		HETEROGENEITY
	Dispersion curves*		
Surface Waves	Rayleigh phase velocities	REM3D Framework Moulik and Ekström, (2014, 2016)	Isotropic S-velocity (3D)
	Love phase velocities		
Waveforms	Body Waveforms		SH-SV anisotropy (3D)
	Mantle Waveforms		410 & 650 km, CMB Topography
Body Waves	Time-distance curves*		
	Arrival times		Isotropic P-velocity (3D)
Free Oscillations	Eigenfrequencies*		(00)
	Quality Factors*		Density (3D)
	Spheroidal splitting functions		Shear attenuation
	Toroidal splitting functions		(ID)

TYPE	DATA	
	Dispersion curves*	
Surface Waves	Rayleigh phase velocities	
	Love phase velocities	
10/	Body Waveforms	
vavetorms	Mantle Waveforms	
De du \A/avea	Time-distance curves*	
body vvaves	Arrival times	
	Eigenfrequencies*	
Free	Quality Factors*	
Oscillations	Spheroidal splitting functions	
	Toroidal splitting functions	

HETEROGENEITY Isotropic S-velocity (3D) SH-SV anisotropy This talk (3D) 410 & 650 km, CMB Topography Isotropic P-velocity (3D) Density (3D) Shear attenuation (ID)

Improved coverage of data

Measurement-by-measurement

We systematically assess measurement uncertainty:

- \rightarrow On identical paths
- → On summary rays
- Both across datasets and within datasets
- Account for different source locations and reference to standard station locations

Tracking down outliers

- Path-by-path analysis allows us to track down the cause of discrepancies between datasets
- Surface wave phase dispersion measurements are susceptible to cycle skips when the accumulated travel-time anomaly is bigger than a period
- We identify and remove cycle skips when constructing the reference dataset
- REM-3D will dramatically decrease likelihood of cycle skips by predicting the reference travel-time anomaly much more precisely than a 1D model can

Tracking down outliers

Tracking down outliers

- Travel-time discrepancies of T/2 are due to polarity reversals at a few stations
- Currently, individual groups store polarity reversal information
 - $\hfill\square$ incomplete and not synced with IRIS DMS
 - Metadata update warning would be helpful!

Fundamental mode Love waves

- → Excellent inter-dataset agreement
- → Increasing errors at long periods (due to tilt noise?)
- → Inter-model discrepancies vary with distance, with a periodicity of ~25° -30°

Rayleigh waves

→ Excellent inter-dataset agreement

- →Increasing errors at long periods for some datasets
- →Inter-model discrepancies suggest outlier datasets

Overtones

- Overtone measurements are less consistent
- Biases and trends among datasets exist
- Measurements from different groups should be combined with caution

Overtones – systematics with period and distance

Inter-dataset discrepancies grow with epicentral distance Median errors are on the order of 2-10 seconds

How detailed should REM-3D be?

- We construct phase velocity maps from 6 contributing datasets (e.g. 100s Rayleigh)
- Identical parameterization / similar regularization
- Compare correlation vs. spherical harmonic degree

How detailed should REM-3D be?

 We construct phase velocity maps from 6 contributing datasets (e.g. 100s Rayleigh)

 Identical parameterizati on / similar regularization

Compare correlation vs. spherical harmonic degree

How detailed should REM-3D be?

- We construct phase velocity maps from 6 contributing datasets (e.g. 100s Rayleigh)
- Identical parameterizati on / similar regularization
- Compare correlation vs. spherical harmonic degree

Parameterization and uncertainty

- 3D REM will come in two flavors:
 - Regionalization Reference profiles of Vp, Vs, r for each of 6 regions in the upper mantle and 2 in the lower mantle
 - **Smooth parameterization** Lateral variations parameterized in spherical splines
- Preliminary analysis suggests that LMAX = 12-18 is justified in the upper mantle by inter-dataset consistency
- Relatively small number of model parameters enable use of model-space search to quantify uncertainty.

Preliminary REM-3D

High consistency with Vs models

- Preliminary REM-3D correlates strongly with existing tomographic models (often r > (8.0)
- High correlations extend to Lmax 14-18

15

16

18

1

Reference Datasets and Models

ID reference Earth model is due for an update:

- Small changes to 1D reference have profound implications for structure inferences (e.g. Irving et al., in press and Poster A1 here)
- Moulik and Ekström (in prep) have created a new 1D reference model incorporating latest normal mode and body wave constraints (and eliminating 220-discontinuity)

□ 3D reference Earth model effort is underway:

- Metadata is crucial: polarity reversals, source location, reference model for measurements
- Fundamental mode dataset: 8 contributed datasets,100 million measurements are reconciled, uncertainties estimated within and across models
- Overtone dataset: 4 contributed datasets, systematic differences between datasets warrant further study and caution when combining datasets
- Preliminary mantle REM-3D:
 - Parameterized in ~362 spherical splines
 - Summary ray data coverage of entire reference dataset