Open Data, Data Services, and Cross-Disciplinary Collaboration in Geophysics

Jeff Freymueller University of Alaska Fairbanks

Outline

- Data: past present and future
- Open data: EarthScope defined the new normal
- Future integrated IRIS/UNAVCO data flows
- Seismogeodesy: An example of integrating cross-disciplinary types of data

Now: Online, Download

- Today, all data are online, but transfer of large data sets remains much slower than local access
 - Most people download once, use locally repeatedly (local archive)
- Repeated download beginning to replace local archive
- A challenge: How to deal with meta-data updates?
 "Oops, the sensor was not installed pointing north", "Sorry, we reported the wrong type of antenna."

Future: Will we access on demand?

- Increasing network speeds follow a power law
- How will you work if networking speeds are ~100x faster?

Image: Jacob Pedersen

Move to Web Services

- IRIS and UNAVCO are moving away from older transfer protocols to web services
- Efficiency, scalability
- Send a URL string, get a data set/product back

Try it out! Hide Response

Curl

Request URL

http://web-services.unevcs.org/gps/deta/position/P328/v3TenelysisCenter-pboGreferenceFrame-iguM86 startilan-2000_40-0110051A004A044A004A041ine-2000-03-0110043A0043A0043A004Feport=iang6 refCoordDpilan=from_analysis_center

Response Body

dataset: GeoCSV 2.0

field_unit: 100 0601 datetime UTC, meters, meters, meters, meters, meters, number, number, number, degrees north, degrees east, meters, meters, meters, meters, meters, meters, number, number, number, UTF-0

- # field_type: string, flost, f
- # attribution: http://www.unavco.org/community/policies_forms/attribution/attribution.html
- # Request UR1: http://web-services.unavco.org/gps/data/position/9378/v37analysisCenter-pbcs

referenceFrame=igs06%starttime=2008-81-01700%3A00%3A00%sendtime=2008-83-01700%3A00%3A00%3A00%sepert=iong% refCoordOption=from_analysix_renter

- # Source File: 2010.pbc.ips00.pos Date: 2016-11-08 05:33:33
- # XTE Reference Coordinate (ige08) %: -2475699.75517 %: -3822330.2947 %: 6450718.33167
- # Applied Offset: H: 0 T: 0 E: 0
- Datelime, K. Y. H. Std Dev H. Std Dev Y. Std Dev H. Corr HY. Corr HH. Corr YH. H latitude. H longitude, Height, delta H. delta E. delta U. Std Dev H. Std Dev H. Std Dev U. Corr HH. Corr HU. Corr HU. Solution

2008-01-01200:00:00.-2475699.72594.-3822330.29432.4450718.32889.0.00234.0.00342.0.00356.0.80298.-8.75100.-0.81490.44.53498.237.04912.83.12234.0.00557.0.01593.-0.00963.0.00121.0.00157.0.00510.-8.62029.0.02750.-0.17109.repro

2008-01-02700-00:00,-2475699.73854,-3822330.29835,4450718.33338,0.00243,0.00354,0.00354,0.00367,0.88200,-0.75200,-0.81500,44.53458,237.06912,83.12893,0.00541,0.01594,-0.00306,0.00125,0.00142,0.00527,-0.62534,0.03542,-0.17589,repro

EarthScope and Open Data

AAAAAAAAA

Drilling into the San Andreas Fault GPS Stations

Borehole Strainmeters

long-baseline Laser Strainmeters

A Transportable Seismic Stations

APermanent Seismic Stations

EarthScope Data

The flood of open data from EarthScope changed the way we do science

Data Shipments by Request Type

1202.95 terabytes projected on June 30, 2017

IRIS DMC Archive

as of 1 July 2017

447.0 terabytes

reflects removal of replicated data

Cumulative Data Archived through Mar 2018 ~306 Tb

UNAVCO

- Cumulative Data and Derived Data Products Delivered through Mar 2018 ~474 Tb
- Total EarthScope PBO Data Volume Archived (all products) = 145 Tb
- Total EarthScope PBO Data Volume Delivered (all products) = 349 Tb

Impacts of Open Data

- The vast holdings of open data have accelerated the pace of our science
 - Analyses of data that used to be research are not done automatically
 - The research frontier is now more in synthesizing and integrating
- Cultural shifts are in progress...

The Future: IRIS and UNAVCO Together

• IRIS and UNAVCO have proposed to work together more closely on the future NGEO facility.

NSF is still working on the NGEO decision...

- Seismologists and geodesists commonly work on different things, but we can make use of each others' products
- Seismogeodesy holds great promise for integrating the fields, at least for large earthquakes

Proposed NGEO Data Access Point

- Building on EarthCube GeoWS project, IRIS and UNAVCO proposed a unified NGEO data access point
 - Cross-disciplinary users are probably most likely to access products rather than raw data
 - Will work for raw data, too!
 - Future: GPS waveform data
- Easier to implement with modern protocols

Seismogeodesy

Seismic Wavefield from 2011 Great East Japan Earthquake

Seismogeodesy

- Looser definition:
 - Use of high rate GPS positions to study dynamic ground motions
 - Using geodetic data the way a seismologist would
- Tighter definition:
 - Combination of co-located geodetic and seismic instruments to produce a single time series of ground motions

Advantages and Applications

- Kinematic GPS position time series combine information about static and dynamic offsets
- GPS position/velocity records can be filtered to be used as seismograms
 - It is even possible to do tomography with GPS seismograms!
 - Why? For some places and times, there are more GPS than seismometers
- No instrumental saturation with GPS
 - No problems with clipping, ground tilts, etc

Ground Motion/Magnitude Scaling holds to M~9

doi: 10.1093/jpi/jpg/78

Geophys. J. Int. (2014) 296, 461–472 Advance Access publication 2013 October 17

Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning

Rongxin Fang, Chuang Shi, Weiwei Song, Guangxing Wang and Jingnan Liu 2020 Insurit Contr. Water University, Pater 10079, Clina E and Milliofe educe.

Back to Gutenberg (1945)!

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 6089-6094, doi:10.1002/2013GL058391, 2013

Earthquake magnitude scaling using seismogeodetic data

Brendan W. Crowell,^{1,2} Diego Melgar,² Yehuda Bock,² Jennifer S. Haase,² and Jianghui Geng²

Received 21 October 2013; revised 26 November 2013; accepted 27 November 2013; published 10 December 2013.

$$\log(P_d) = -0.893 + 0.562M_w - 1.731\log(R)$$
(2)

GPS Displacements/Velocities

Conclusions

- Open data and fast network speeds have changed/are changing the way we work
- Future scientific frontiers will increasingly depend on synthesis and integration of large data sets
- IRIS and UNAVCO are poised to help all of us exploit these opportunities
- There are exciting scientific opportunities in seismogeodesy, the fusion of seismology and geodesy