Climate modulated water storage, the deformation, and California earthquakes

Christopher W Johnson

Scripps Inst. Of Oceanography

Roland Bürgmann Berkeley Seismological Lab

Yuning Fu Bowling Green State University

Berkeley Seismological Laboratory

CALIFORNIA, BERKELEY

ECTONICS

2

Christopher Johnson

Periodicity in Seismicity Records

Evidence for Stress Modulation

Dutilleul, Johnson, Bürgmann, et al., JGR, 2015

Period (month)

Schuster

Spectrum

ACTIVE CALIFORNIA, BERKELEY

Seasonal Loading and Coulomb Failure

Mechanical Schematic of Critically Stressed Fault

Evidence of Water/Snow Loading and Seismicity

ACTIVE

Eq (M>7.0)

6/28/18

Christopher Johnson

Snow Loading in Japan

Average Water Thickness in California

Argus et al., 2014

5

Elastic Load Model

- **Effective Water Storage** ulletestimated from vertical **GPS** displacement
- GPS Stations in the **Central Valley omitted**
- **Invert displacement for** ulletmass on surface and estimate water storage

Inversion following Argus et al., GRL, 2014 and Fu et al., JGR, 2015

Terrestrail Water Storage

GRACE / GLDAS Comparison

- Gravity Measurements to Infer Water Storage
- Composite models

Deformation Modeling

- Linear Elastic
- Stress at 8 km Depth
- Rotate to Failure Plane
- Shear (σs) and Normal (σN)
- Δ **Coulomb** = $\Delta \sigma_{s} + \mu \Delta \sigma_{N}$
- Seasonal stress on focal plane

Johnson, Fu, and Bürgmann, Science 2017

6/28/18 Christopher Johnson

ACTIVE CALIFORNIA, BEI

Percent excess M≥2.0 seismicity Shear Stress Amplitude and Rate

Johnson, Fu, and Bürgmann, Science 2017

10

Are Other Loading Sources Contributing to Earthquake Modulation?

- Surface Water
- Atmosphere
- **Temperature**
- Ocean
- Non tidal Ocean
- **Earth Body Tides** •
- Earth Pole Tides ullet

11

What is the Largest Annual Load?

Table 1

Average Seasonal Peak-to-Peak Stress (Pa) With 1-Standard Error for Each Loading Source

Loading source	Normal	Shear	Coulomb
Atmosphere (annual)	760 ± 225	171 ± 144	371 ± 240
Earth body tide (annual)	2 ± 1	3 ± 1	2 ± 1
Earth body tide (semiannual)	14 ± 12	16 ± 11	14 ± 10
Earth pole tide	125 ± 25	25 ± 10	53 ± 31
Nontidal ocean	44 ± 95	28 ± 58	22 ± 60
Ocean tide	4 ± 3	3 ± 2	4 ± 3
Temperature (annual)	474 ± 204	101 ± 69	133 ± 122
Hydrosphere	2,654 ± 2,764	1,052 ± 1,091	1,477 ± 1,370

Background Stress Orientation

Invert using high quality focal mechanisms

No amplitude information

SHmax Azimuth shown

Colored by Tensor Shape Describes the Rupture Style

Project Seasonal Stress into Principal Orientations

Test for Excess Seismicity

6/28/18 Christopher Johnson

ACTIVE CALIFORNIA, BERKEL

GALIFORNIA, BERKELEY

Percent Excess Seismicity

2006-2014 declustered hypocentral seismicity Principal components derived from focal mechanism inversion Loading time series projected into ambient stress field Earthquakes at each inversion point used in calculation Fault unclamping indicates a correlation

TECTONICS

ACTIVE

6/28/18

Christopher Johnson

Sigma-1 & Sigma-3: More events when mean stress decreases

Johnson, Fu, and Bürgmann, JGR 2017

Failure Mechanism

- Change in mean normal stress
 - Possible fluid interaction

1/ Is Seasonal Hydrological Loading Modulating Seismicity?

Are faults responding to stress perturbations with annual periods? Hydrological loading is a large contributing factor in the modulation of earthquakes from the annual stress cycles

Is the crust critically stressed? Excess seismicity from a 1-5 kPa

What is the failure mechanism for earthquake nucleation? Positive correlation with peak stress amplitude suggests an instantaneous threshold failure stress. Positive correlation with peak stressing rate suggests agrees with lab and model results

2/ Are Other Natural Deformation Sources Contributing?

All natural loading cycles should be considered when analyzing seasonal stress cycles. Water is the largest.

Seismicity indicates more events when loading align with ambient background stress orientation.

6/28/18 Christopher Johnson

Thank You Questions?

