Lithospheric structure of an incipient continental rift: Converted wave imaging of the Malawi Rift, southern East African Rift System

Lamont-Doherty Earth Observatory

Cindy Ebinger, Andy Nyblade, Patrick Chindindali, Richard Ferdinand, Gabby Mbgoni, Godson Kamihanda

EAST AFRICAN RIFT SYSTEM, LAKE MALAWI

Hanson, 2003

THE LITHOSPHERE-ASTHENOSPHERE SYSTEM

Fischer et al., 2010

COMMON CONVERSION POINT (CCP) STACK S-to-P scattered waves (and similarly, P-to-S)

RIFT ARCHITECTURE IN THE WESTERN U.S.

Narrow Rift Mode

🗕 150 km

150 km

Wide Rift Mode

Basin and Range:

- ~10 mm/year extension
- 36 Ma to present
- 50-200% cumulative extension
- Widespread volcanism

McQuarrie and Wernicke, 2005

MODES OF RIFTING

Malawi Rift:

- ~2 mm/year extension
- 9 Ma to present
- <15% cumulative extension
- Limited volcanism

Ebinger, 1989; Ebinger et al., 1993; Saria et al., 2014

Google Earth

THE SEGMENT EXPERIMENT

Shillington et al., 2016

DATA: SEGMeNT + other available broadband

Data coverage at 80 km for Sp stack (total 802 RFs)

Data coverage at 40 km for Ps stack (total 3001 RFs)

LOCAL TECTONICS

Accardo, 2018

31

32

33

35

34

36

37

TRAVERSING LAKE MALAWI: Ps imaging

Borrego et al., in review Shillington et al., in prep
Kachingwe et al., 2015 Tugume et al., 2012
Last et al., 1997

MAPPING THE DEPTH OF THE LAB

Primary NVG depth from Sp CCP stack

MAPPING THE BASE OF THE CRUST

36

55

Kachingwe et al., 2015

Tugume et al., 2012

Last et al., 1997

37

60

Crustal thickness from Ps CCP stack

A NARROW RIFT THROUGHOUT THE LITHOSPHERE

60

CONCLUSIONS

- Crustal thinning localised beneath Lake Malawi
 - ~ 50 km wide
 - β ≤ 1.75
- Lithospheric thinning also localised (c.f. Main Ethiopian Rift), with much greater thinning of the lithospheric mantle
 - ~ 70 km wide
 - $\beta \leq 4.1$
 - Need more than just mechanical stretching!
- Spatial patterns of lithospheric thinning suggest some asymmetry
- Rift localization controlled by pre-existing structure (e.g. sutures, weak Ubendian Belt) or is asymmetry from dynamic processes of rifting old, cold lithosphere?

