Earthquake rupture processes revealed by dense array analyses

In collaboration with Jeff McGuire, Peter Shearer, Catherine de Groot-hedlin, Michael Hedlin

Wenyuan Fan

Postdoctoral Scholar Department of Geology and Geophysics Woods Hole Oceanographic Institution

Over a quadrillion times energy difference!

⁻¹ Magnitude

107 Moment (Nm)

10

1024

Study Earthquakes with Arrays

Data credit: FDSN and GCMT

Fan & Shearer, 2017, JGR

Data credit: FDSN and GCMT

How earthquake processes evolve along faults?

Local near-instantaneous dynamic triggering of large earthquakes

Using surface waves of large aperture arrays to detect and locate non-earthquake (glacial-quakes, landslides, submarine landslides)

Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma

How earthquake processes evolve along faults?

Local near-instantaneous dynamic triggering of large earthquakes

Using surface waves of large aperture arrays to detect and locate non-earthquake (glacial-quakes, landslides, submarine landslides)

Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma

Both have same ray path and travel time

Source region

Assume grid of possible source locations

> Stack along predicted P-wave travel time curve to map rupture propagation

> > Fan & Shearer, JGR, 2017

Both have same ray path and travel time

Source region

Assume grid of possible source locations

> Stack along predicted **_** P-wave travel time curve + + + ++++++to map rupture propagation

> > Fan & Shearer, JGR, 2017

Ishii et al., JGR, 2005; Walker & Shearer., JGR 2009

Ishii et al., JGR, 2005; Walker & Shearer., JGR 2009

Ishii et al., JGR, 2005; Walker & Shearer., JGR 2009

Fault interactions and triggering in Sumatra

Fan & Shearer, GRL, 2016; Fan & Shearer, JGR, 2018

Fault interactions and triggering in Sumatra (Not mainshock water phase artifacts!)

Fan & Shearer, GRL, 2016; Fan & Shearer, JGR, 2018

Fault interactions and triggering in Sumatra (Not mainshock water phase artifacts!)

Fan & Shearer, GRL, 2016; Fan & Shearer, JGR, 2018

How common is this type of triggering?

Local near-instantaneous dynamic triggering of large earthquakes

Local near-instantaneous dynamic triggering of large earthquakes

Local near-instantaneous dynamic triggering of large earthquakes

Fan & Shearer, Science, 2016

~40s high amplitude seismic waves from M7 earthquakes

Fan & Shearer, Science, 2016

Fan & Shearer, Science, 2016

- Any preferred tectonic setting?
- How about long term strain/ stress field?

Fan & Shearer, Science, 2016

Global Arrays:

Large earthquakes (M > 7) with all type of focalmechanisms commonly dynamically trigger early aftershocks on nearby faults as far as 300 km within tens of seconds.

How earthquake processes evolve along faults?

Tsunami earthquake and splay faults

Using surface waves of large aperture arrays to detect and locate non-earthquake (glacial-quakes, landslides, submarine landslides)

Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma

Using surface waves recorded by a large mesh of three-element arrays to detect and locate disparate seismic sources

Goal: The unknown unknowns. What are in the observed seismic wavefield?

Direction of highly coherent local surface waves (period: 20 to 50 s)

Resolve seismic sources with wavefield

Resolve seismic sources with wavefield

Fan et al., 2018 in revision

2010 Mw 7.2 El-Mayor earthquake

Nuugaatsiaq Landslide (~Ms 4.8)

Elevation difference between 6/5/17 and 6/22/17

Bessette-Kirton et al., 2017 USGS; Fan et al., 2018 in revision

Bessette-Kirton et al., 2017 USGS; Fan et al., 2018 in revision

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus Image U.S. Geological Survey Image IBCAO

Available data is the key for new findings (computers as well)

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus Image U.S. Geological Survey Image IBCAO

TA Archive, Data transfer

HPC with Large Dataset

Future: Preserve Legacy, Azimuthal Coverage

Continental Arrays Exotic slip events may occur more often than we thought.

Moment (Nm)	Magnitude	How earthou	
	- 10		
	7~8		
		Tsunami earthqua	
	3~5		
	2	 Nodal Arrays Investigating micro Community Wavef 	
107	-1		

uake processes evolve along faults?

ake and splay faults

rrays ves of large aperture arrays to detect and locate glacial-quakes, landslides, submarine landslides)

oearthquake finite source attributes with IRIS field Demonstration Experiment in Oklahoma

IRIS Community Wavefield Demonstration Experiment in Oklahoma

SH waves

Fan & McGuire, 2018, GJI

ve)	
	l
	ł
	ł
	ł
	ł
	ł
	ŀ
	L
	L
	I
	ľ
	ł
	ł
	ł
	ł
	ł
	ļ
	l
	ĺ
	ſ
	ľ
\bigvee	I
	ł
M	ł
$\sim \sim \sim$	ŀ
	ļ
\sim	I
$\sim \lambda$ \sim	l
	ſ
// / /	ľ
\mathcal{Y}_{Δ}	ŀ
	ł
	ł
$// \times \sim$	ļ
	ŀ
	l
	ĺ
\sim	Í
$7 \sim \sim$	ł
1/2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ł
\sim	ł
$// \sum$	ł
	ļ
//	ļ
	l
	ĺ
	ſ
$\times \land \land$	ľ
$1 \sim 1 \sim 100$	ŀ
	ŀ
\sim	ł
\sim	I
\leq	l
	ĺ
$\forall \land \land$	ſ
	l
	ſ
	Р.

0.2

\frown	
\sim	
\sim	-
	-
	-
	-
~~~	
	-
	-
$\frown$	-
$\sim$	-
$\sim$	
$\sim$	
$\sim$	L
$\sim$	
	[
$\sim$ $\sim$	[
	[
$\frown$	[
$\sim \sim \sim \sim$	[
$\gamma \lambda \chi \gamma$	[
$\sim$ $\sim$ $\sim$	[
	Г.
	L
× ×	
× × ×	

### Pre-wavefield time.....

![](_page_43_Figure_2.jpeg)

![](_page_43_Figure_4.jpeg)

![](_page_44_Figure_1.jpeg)

Earthquake stress-drops inform rupture dynamics and earthquake physics, but having factor of 1000 difference for a given magnitude!

Allmann & Shearer, 2007, 2009, JGR

![](_page_44_Picture_4.jpeg)

![](_page_45_Figure_1.jpeg)

Earthquake stress-drops inform rupture dynamics and earthquake physics, but having factor of 1000 difference for a given magnitude!

Allmann & Shearer, 2007, 2009, JGR

![](_page_45_Picture_4.jpeg)

### Estimating rupture area is the key

![](_page_46_Figure_1.jpeg)

Brune model  $\Delta \sigma = \frac{7}{16} \left(\frac{f_c}{\kappa\beta}\right)^3 I$  $M_0$ 

### Wavefield: Physical meaning of corner frequency

![](_page_47_Figure_2.jpeg)

### Physical meaning of corner frequency

![](_page_48_Figure_1.jpeg)

**Directly** estimate microearthquake finite source attributes with nodal array by second moments

### Empirical Green's function (EGF) deconvolution to get apparent source time functions (ASTF)

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

Recorded seismogram

![](_page_50_Picture_5.jpeg)

![](_page_50_Picture_6.jpeg)

![](_page_51_Figure_1.jpeg)

### Physically meaningful pattern of apparent durations

![](_page_51_Picture_4.jpeg)

![](_page_52_Figure_0.jpeg)

### Stress-drop from second moments

### Optimal estimation $\Delta \sigma = 7.3 \,\mathrm{MPa}$

![](_page_52_Picture_4.jpeg)

![](_page_53_Figure_0.jpeg)

Stress-drop uncertainties from extreme rupture scenarios permitted by the data

 $\Delta \sigma = 5.0 \,\mathrm{MPa}$ Maximum area

Optimal estimation  $\Delta \sigma = 7.3 \,\mathrm{MPa}$ 

Minimum area  $\Delta \sigma = 9.1 \,\mathrm{MPa}$ 

### **Only Factor of 2!**

![](_page_53_Picture_7.jpeg)

# The concept and methodology has the potential to address the controversy on earthquake stress-drop

![](_page_54_Figure_1.jpeg)

### Wavefield observations **bridging** models and observations

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

### Apparent durations

![](_page_55_Figure_4.jpeg)

Fan & McGuire, 2018, GJI; Kaneko & Shearer, 2014, GJI; Kaneko & Shearer, 2015, JGR

### Corner frequencies

### Dynamic rupture simulation

![](_page_55_Picture_8.jpeg)

# Nodal Arrays: Small earthquakes can be just as complex as large earthquakes

**OPPORTUNITY!** 3C nodes has the potential to revolutionize our understanding of both earthquakes and tectonics

Moment (Nm)	Magnitude	We observe o
1024	10	earthqua
Access	7~8	- Global Arrays Tsunami earthqua
Easy Data	3~5	- Continental A Using surface way non-earthquake (g events
H P S	2	<ul> <li>Nodal Arrays</li> <li>Investigating micro</li> <li>Community Wave</li> </ul>
107	-1	

# complexities for small and large akes and exotic slip events

ake and splay faults

### rrays

ves of large aperture arrays to detect and locate glacial-quakes, landslides, submarine landslides)

oearthquake finite source attributes with IRIS field Demonstration Experiment in Oklahoma

![](_page_58_Picture_6.jpeg)

# Global Arrays:

Large earthquakes (M > 7) with all type of focal-mechanisms commonly dynamically trigger early aftershocks.

Continental Arrays Exotic slip events may occur more often than we thought.

![](_page_59_Figure_3.jpeg)

![](_page_59_Figure_4.jpeg)

Fan & Shearer, 2016, Science ; Fan & McGuire, 2018, GJI; Fan et al., 2018, in revision

# Nodal Arrays:

Small earthquakes can be just as complex as large earthquakes

![](_page_59_Figure_9.jpeg)

![](_page_59_Figure_10.jpeg)

![](_page_59_Picture_11.jpeg)

![](_page_59_Picture_12.jpeg)