

Systematic mining and reanalysis of volcano seismo-acoustic waveform datasets Robin S. Matoza

Department of Earth Science; University of California, Santa Barbara

- Seismicity plays a central role in understanding how volcanoes work
- Growing seismic data volumes: develop techniques for systematic analyses
- Event detection and cataloging, high-precision earthquake relocation, acoustic localization, waveform and spectral event classification, and source mechanism inversions

Volcano seismology and acoustics

Acoustic

• Atmospheric acoustics (infrasound): ~0.01-20 Hz Variety of shallow and subaerial sources • Explosive volcanism: powerful signals

• Migration of fluid from mantle depths to surface Faulting & fluid transport in the solid earth Limited propagation < few hundred km

Seismic

Phreatic eruption, Mount St. Helens, 8 March 2005

Acoustic

10 20 30 40 50 Time (min)	60

Matoza et al. [2007]

Two broad classes of volcano-seismic signals worldwide

1) Volcano-tectonic (VT)

Chouet [1996]

2) Long-period (LP) [0.5-5 Hz]

Two broad classes of volcano-seismic signals worldwide

1) Volcano-tectonic (VT)

- Shear/tensile failure in brittle solid
- e.g., intrusions, loading and deformation

Chouet [1996]

Volcano seismology

2) Long-period (LP) [0.5-5 Hz]

• Actively involve a fluid

Two broad classes of volcano-seismic signals worldwide

1) Volcano-tectonic (VT)

- Shear/tensile failure in brittle solid
- e.g., intrusions, loading and deformation

Chouet [1996]

Volcano seismology

2) Long-period (LP) [0.5-5 Hz]

- Actively involve a fluid
- Includes LP events and tremor

Mount St. Helens 2004–2008 eruption

Spine extrusion and long-period (LP, 0.5–5 Hz) seismicity: some "drumbeats"

Mount St. Helens 2004–2008 eruption

Solid extrusion, plug stick-slip

e.g., Iverson et al. [2006]; Harrington and Brodsky [2007]; Iverson [2008]; Kendrick et al. [2014]

Cyclic recharge-collapse of a hydrothermal crack

e.g., Waite et al. [2008]; Matoza et al. [2009]; Matoza and Chouet [2010]

LP "subevents" or small LPs

LP "subevents" or small LPs

Single-station cross-correlation to separate event types

Station BLIS 4–16 November 2004

Single-station cross-correlation to separate event types

Station BLIS 4–16 November 2004

Single-station cross-correlation to separate event types

Station BLIS 4–16 November 2004

Network-based detection and stacking

- Employ network-based template matching and stacking to boost SNR for waveform inversion
- e.g., Gibbons and Ringal [2006], Shelly et al. [2007], Shelly and Hill [2011]

Broadband Array at Mount St. Helens [Waite et al., 2008]

Network-based detection and stacking

- Slide initial "seed" event through 10-hr waveform; all stations and components
- Compute network-mean correlation coefficient
- Form master event; repeat using 8-days of data 29 June to 7 July 2005

Network-based detection and stacking

- 29 June to 7 July 2005
- 8 days: 892 network triggers
- Stack 359 high-quality triggers
- Linear (mean) stack in 2-hr periods
- Phase-weight stack the 2-hr stacks [*Schimmel et al.*, 2011; *Thurber et al.*, 2014]
- tf-PWS: Coherence of instantaneous phase

hm/s

hm/s

s/m/s

• Repeat for all stations and components

- Full seismic waveform inversion for a point-source moment-tensor and single force vector representation of the source [e.g., Ohminato et al. 1998; Chouet et al. 2003; Dawson et al. 2011; Matoza et al., 2015]
- A free inversion without constraining the source geometry.

Moment-tensor

$$\mathbf{M} = \begin{bmatrix} M_{xx} & M_{xy} \\ M_{yx} & M_{yz} \\ M_{zx} & M_{zz} \end{bmatrix}$$
$$\mathbf{F} = \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}$$

fit the whole waveform

• Green's functions estimated using 3D finite-differences

Full-waveform inversion

Full-waveform inversion of a single subevent multiplet

Perform a grid search over trial source nodes with increasing spatial density

• Define solution with the minimum E_1 residual error and a metric for waveform stability

Full-waveform inversion of a single subevent multiplet

- Shallow depth ~30 m in southern part of crater

Moment tensor eigenvectors, scaled by eigenvalues

• Volumetric ~10 m³ source mechanism consistent with subhorizontal crack (assume Poisson solid, $\mu = 12$ GPa)

Horizontal crack moment-tensor:

$$M = \Delta V \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda + \\ \text{volume change} \end{pmatrix}$$

Note that the second se

Matoza et al. [2015]

Interpretation

- Sudden condensation of metastable steam [Thiéry and Mercury, 2009]
- Horizontal structure feasible
- ~500 m depth below pre-1980 summit in old volcanic center

 Interaction point between shallow hydrothermal system and cool meteoric water in outer flank, e.g., snow melt

GEOLOGIC CROSS-SECTION A-A'-A'

Figure 205.—Cross section A-A" showing August 1979 and May 18 preeruption profiles, and May 18 posteruption profile. Geology of cone from C. A. Hopson, based on unpublished pre-May 18 mapping and inspection of amphitheater. Slide boundaries I (red), II (blue), and III (black) are approximately located, but precise configuration at depth is uncertain. Dacite intrusion of March-May 1980 indicated by light-red pattern.

Voight et al. [1981]

6000

4000

SEA LEVEL

Velocity structure

- Waite and Moran [2008]: simple structure in shallow subsurface with spatial heterogeneities on the order of ~1 km
- Waveform inversions limited to <2 Hz [Waite et al., 2008; Matoza et al. 2015]
- Source depth below crater floor: LP events ~200 m; subevents ~30 m [*Waite et al.*, 2008; *Matoza et al.* 2015]

G.P. Waite, S.C. Moran / Journal of Volcanology and Geothermal Research 182 (2009) 113-122

Fig. 7. A west-east cross section through a single fine-grid model highlights the low velocity anomaly directly beneath the volcano. There is no vertical exaggeration.

<2 km 1D P-wave model *Thelen et al.* [2008]

Future Work: Better imaging of near-surface velocity structure

- Improved knowledge of shallow subsurface velocity structure at volcanoes (upper 500 m, within edifice) • Resolve controversies about source vs. path effects
- Better constrained full-waveform inversion of smaller and higher frequency sources

Goldstein and Chouet [1994]

Bean et al. [2008]

- Frequently active and accessible, ~300 m edifice
- "Strombolian" style activity: high-amplitude explosions every ~1–5 minutes from 2–3 main eruptive vents
- Regularly recorded at International Monitoring System infrasound station IS22, New Caledonia (400 km)

Yasur Volcano, Vanuatu, July 2016

Collaborative multi-parametric field experiment 26 July to 2 August 2016

Seismic data

• 11 broadband seismometers (Trillium Compact 120 s; Omnirecs DATA-CUBE digitizer)

Infrasound data

- 6 single infrasound sensors (Chaparral C60V)
- 7 small-aperture 3-element infrasound arrays
- 2 tethered balloon infrasound systems

Gas geochemistry data

- FTIR
- 2 scanning Flyspecs (SO₂)

Imaging data

- High-frame rate DSLR
- UAV DJI Phantom
- Go-Pro cameras
- FLIR (infrared)

Geologic samples

Scoria and ash samples for petrologic analysis

YS: seismic; **YI**: infrasound Contour interval: 20 m

> University of California, Santa Barbara; GNS New Zealand; University of Alaska Fairbanks; University of Canterbury, New Zealand

Seismo-acoustic network

Rapid deployment of broadband network

Nanometrics Trillium Compact 120-s post-hole
Omnirecs DATA-CUBE digitizer
8 x D-Cell battery pack per 4 days

- 6-day dataset, >8,400 infrasound explosions, >10,400 seismic events
- ~1–2 events per minute

Seismo-acoustic data 26 July to 2 August 2016

• First order event detection with network-coincident STA/LTA automatic triggering

Seismo-acoustic data 26 July to 2 August 2016

First order event detection with network-coincident STA/LTA automatic triggering

100

-400

0

200 Time [sec]

Seismo-acoustic waveforms

300

YS: seismic; **YI**: infrasound Contour interval: 20 m

Vel. [µm/s]

Seismo-acoustic waveforms

- Short-duration asymmetric explosion waveforms
- Near-continuous broadband infrasonic tremor consisting of repetitive positively skewed pulses

[Marchetti et al., 2013; Meier et al., 2016; Spina et al., 2016]

- Numerous repetitive long-period (LP) events
 - Underlain by very-long-period (VLP) signals with periods of ~10 s

[Kremers et al., 2013; Battaglia et al., 2012; 2016]

LP: 0.5–5 Hz (0.2–2 s period) **VLP:** 0.01–0.5 Hz (2–100 s period)

200

200

Full-waveform inversion of VLP seismic events

- Frequency of inversion: 0.002 to 2 Hz
- spatial density (3 stages down to 20-m spacing)

- Individual VLP seismic events are contaminated by noise from microseisms and from the continuous VLP tremor oscillation • Employ network-based template matching and stacking to boost the signal-to-noise ratios and isolate the transient VLP waveform signature

Network-based detection

Full-waveform inversion of VLP seismic events

• Derived source location is beneath the main summit vent area at 680 m below sea level (870 m below the topography at this location)

10¹³ Nm

E2 error is 4.2% based on the waveform portion from 10 to 50 s; in the band 0.002 to 2 Hz

Hawaiian Volcano Observatory (HVO) network

- Hawaii Island: tectonic, VT, and LP earthquakes at a range of depths from mantle to surface; ~5,000-10,000 earthquakes per year
- Digital waveform data available from mid-1980s

Hawaiian Volcano Observatory (HVO) network

- ~50-station permanent HVO network; mostly short-period, vertical component only 1986–2009
- Systematic analyses (e.g., 198k events 1986-2009; 23 years of data from CUSP system; Matoza et al. [2013], Lin and Okubo [2016])
- Currently working on data post 2009 (AQMS), more broadband stations; continuous waveform data

- Considered waveforms for 198k events, 23 years
- Time-domain cross correlations computed for ~71 million event pairs, *P*- and *S*-waves, 243 million differential times
- Combined cluster analysis and relative relocation using gridsearch *L*1-norm method
- Relocated 157k (79%)
- Based on methods developed for Southern California

Relative event location

- Solve for relative location between nearby events
- Without solving for complex 3D velocity structure
- Waveform cross correlation dramatically reduces phase pick uncertainty

Relative event location

Matoza et al., [2013]

Relative event location

Matoza et al., [2013]

Volcano seismology and acoustics

Acoustic

• Atmospheric acoustics (infrasound): ~0.01-20 Hz Variety of shallow and subaerial sources • Explosive volcanism: powerful signals

• Migration of fluid from mantle depths to surface Faulting & fluid transport in the solid earth Limited propagation < few hundred km

Volcano seismology and acoustics

Ray-tracing with HARPA code [Jones et al. 1986]

- CTBTO IMS: Growing global network of infrasound arrays (50 certified, 60 planned) • Each station is a 4–8 element infrasound array (2–3 km aperture)
- Average station spacing: ~2,000 km for complete network

IMS infrasound network

nternational Monitoring System (IMS)

June 2009 Eruption of Sarychev Peak, Kuriles

- Infrasound 640-6,400 km from Sarychev Peak
- Only ground-based data (remote location, no local monitoring)

International Monitoring System Infrasound network

NASA Earth Observatory

June 2009 Eruption of Sarychev Peak, Kuriles

Matoza et al. [2011]

June 2009 Eruption of Sarychev Peak, Kuriles

• We can: Detect, locate, and provide chronologies of explosive volcanism

Matoza et al. [2011]

Automated global volcano acoustic cataloging

- Systematic search of IMS data for eruption infrasound • Aim: build a global quantitative acoustic catalog of explosive volcanism

Potentially active volcanoes [Siebert and Simkin, 2002-]

Matoza et al., [2017]

Automated global volcano acoustic cataloging

1. Go backwards from infrasound data, blind search for eruption signals 2. Analyze all IMS data globally, not just individual case studies or regions

Potentially active volcanoes [Siebert and Simkin, 2002-]

Matoza et al., [2017]

Combined association and location: brute-force, grid-search, cross-bearings approach

JGR

AGU PUBLICATIONS

Journal of Geophysical Research: Solid Earth

RESEARCH ARTICLE

10.1002/2016JB013356

Key Points:

- Method to detect and locate infrasound from sustained explosive volcanic eruptions
- Uses global International Monitoring System infrasound data
- Global, multiyear infrasonic catalog of sustained explosive volcanic eruptions

Supporting Information:

Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network

Robin S. Matoza¹, David N. Green², Alexis Le Pichon³, Peter M. Shearer⁴, David Fee⁵, Pierrick Mialle⁶, and Lars Ceranna⁷

¹Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, California, USA, ²AWE Blacknest, Reading, UK, ³CEA, DAM, DIF, Arpajon, France, ⁴Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA, ⁵Wilson Alaska Technical Center and Alaska Volcano Observatory, University of Alaska Fairbanks, Fairbanks, Alaska, USA, ⁶CTBTO, Vienna, Austria, ⁷BGR, Hannover, Germany

Planned: Public release of Fortran 90 code

S-vAsc: association and location

longitude

- Link each station to a grid of trial source nodes based on backazimuth • No atmospheric propagation correction

Matoza et al. [2017]

 \mathbf{OOOO}

- Sarychev Peak, 4 stations
- 11–16 June 2009

Example grid function: Sarychev Peak 2009

Matoza et al. [2017]

Combined association and location: brute-force, grid-search, cross-bearings approach

Sarychev Peak 4 stations

- 5-day cumulative stack
- 11–16 June 2009

Grid value (number of pixels)

100000

200000

IS-vAsc: association and location

longitude

- Link each station to a grid of trial source nodes based on backazimuth
- No atmospheric propagation correction

Matoza et al. [2017]

- Detection capability improves as IMS network nears completion
- 2005; Matoza et al., 2007; Garces et al., 2008; De Angelis et al., 2012; Taisne et al., 2012; Tailpied et al., 2013]
- Utility of additional infrasound stations in regions of dense volcanism [e.g., Guilbert et al., Add more infrasound sensors to existing regional seismic networks

3rd nearest station, 41 IMS stations

IMS network and global volcano monitoring

3rd nearest station, 59 planned IMS stations

Matoza et al. [2017]

- 1,525 to 5,122 km ranges
- seismo-acoustic stations across Chile

April 2015 eruption of Calbuco

No ray tracing (522 km from true)

Grid value (number of pixels)

April 2015 eruption of Calbuco

3D ray-tracing + ECMWF (172 km from true)

Matoza et al. [2018]

Chilean National Seismic Network: 10 seismo-acoustic stations Infrasound recorded well on 4 stations out to 1,540 km Only 1 station (GO07, 216 km) recorded both infrasound and seismic from Calbuco

nce
$$\gamma_{wp}^2(f) = \frac{|S_{wp}|^2}{S_{ww}S_{pp}}$$
 — power spectra

Seismo-acoustic cross-correlation and coherence

Seismo-acoustic cross-correlation and coherence

Figure: D. Fee, UAF

210 EarthScope Transportable Array (TA) colocated seismic and infrasound stations spread across Alaska, ~85 km spacing

Sanderson et al.; Identifying and Mitigating Hazards in the 21st Century

H2. Remote explosive volcanic eruption detection, location, and characterization using the EarthScope Transportable Array in Alaska

EarthScope TA Reverse-Time Migration (RTM)

Trial time: 2017-01-02T22:55:16.000000Z, stations < 2500.0 km of Bogoslof

- Bogoslof volcano; eruptions December 2016 to August 2017
- More than 60 eruptive events from Bogoslof provide a
- unique calibration dataset

Filtered infrasound originating from Bogoslof

H2. Remote explosive volcanic eruption detection, location, and characterization using the EarthScope Transportable Array in Alaska

EarthScope TA Reverse-Time Migration (RTM)

Sanderson et al.; Identifying and Mitigating Hazards in the 21st Century

EarthScope TA Reverse-Time Migration (RTM)

Sanderson et al.; Identifying and Mitigating Hazards in the 21st Century H2. Remote explosive volcanic eruption detection, location, and characterization using the EarthScope Transportable Array in Alaska

- Seismology and infrasound are complementary methods for understanding and monitoring volcanoes
- Source size varies: from tiny ~10 m³ volumetric oscillations of fluid-filled cracks, observable only within crater, to explosive eruptions detectable globally with infrasound
- Rich multi-year seismo-acoustic datasets are becoming available from volcanoes worldwide
- Developing computational techniques to systematically investigate datasets, compare and contrast different volcanic systems, catalog and quantify Earth's volcanism, and test hypotheses about how volcanoes work

Conclusions

- Automated detection and cataloging of global explosive eruptions feasible with IMS

Recommendations

Augmenting seismic networks with infrasound sensors in volcanic regions will dramatically enhance volcanic signal detection, reduce latency, and improve discrimination capability Adding single infrasound sensors to seismic stations helps significantly (~250–500 km spacing) • Adding small arrays (e.g., 3–4 infrasound sensors, ~100 m aperture) would help even more

Lars Ceranna **Bernard Chouet** Phillip Dawson David Fee Rebecca Fitzgerald Luis Franco Milton Garces David Green Matthew Haney Michael Hedlin Alexandra lezzi Richard Johnson Arthur Jolly Megan Kelley Ben Kennedy

Guoqing Lin Alexis Le Pichon John Lyons Kathleen McKee Pierrick Mialle T. Dylan Mikesell Seth C. Moran Paul Okubo Richard Sanderson Peter Shearer O. Alberto Valderrama Julien Vergoz Gregory Waite Cecily Wolfe

Acknowledgements

with the sile way way way

