Adapting GNSS Receivers for Earthquake Early Warning Systems

IRIS Seismic Instrumentation Technology Symposium 2018

www.Septentrio.com

October 2018

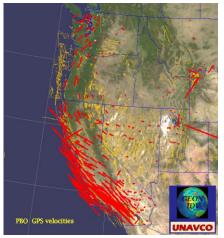
- The Company
- Why GNSS for EEW?
- The Equipment
- Adapting GNSS Receivers for EEW
 - On-Board Precise Point Positioning (PPP)
 - Storage Integrity
- Summary

Septentrio – The Company

- Est. 2000, as a spin off of IMEC
- Headquarters: Leuven, Belgium
- Currently 100+ people worldwide; >50% in R&D
- Contracted @ European Space Agency (ESA) since 2002
 - Active role in Galileo and other strategic programs
- Veripos program initiated in 2008
 - Established global reference station network for PPP corrections
- Focused on Professional GNSS Segments:
 - Scientific Monitoring & Reference
 Stations
 - Machine Control & Automation
 - Land, Marine and Aerial Survey

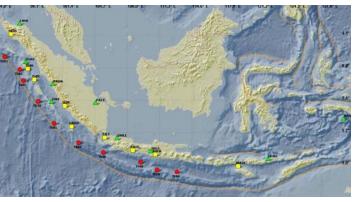
Leuven, Belgium: Home to worldclass institutions

PolaRx5 GNSS Family: Hardware and Software Variants


		-			
Hardware		PolaRx5 Ref Station	PolaRx5e Ref Station	PolaRx5S Iono Monitoring	PolaRx5TR Time Transfer
	IP rating	IP65	IP68	IP65	IP65
	Internal batter	NO	YES	NO	NO
	Internal clock	TCXO	ТСХО	ОСХО	TCXO
	REF IN	YES	YES	NO	YES
	PPS IN	NO	NO	NO	YES
	External Clock Synchronization	Frequency only	Frequency only	NO	Frequency and time
	REF OUT	YES	YES	YES	YES
	PPS OUT	YES	YES	YES	YES
Software	PPP for seismic	YES	YES	NO	NO
	CGGTTS	NO	NO	NO	YES
	ISMR	NO	NO	YES	NO
	IQ Corr	NO	NO	YES	NO
sententrio					

Septentrio in Geo-Science Applications

- Crustal Deformation Monitoring
- Volcano Monitoring
- Tsunami Early Warning
- Landslide Monitoring



EarthScope – North American Plate Boundary Observatory (PBO)

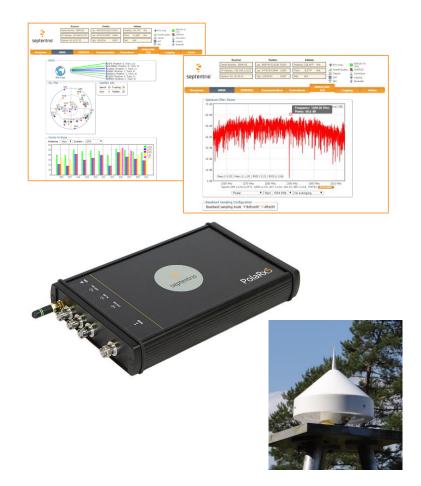
Slovenia (Stoze Mountain) – Landslide Monitoring

Indonesia – Tsunami Early Warning System (GFZ – Germany)

Montserrat Volcano Observatory (photo credit: U. West Indies)

Why GNSS for Earthquake Early Warning

- Ground motion data measured by GNSS receivers complement traditional seismic approaches for the development of Earthquake Early Warning (EEW) algorithms.
- GNSS data enables a reliable estimation of fault length and magnitude for the largest earthquakes.
- A real-time on board Precise Point Positioning (PPP) solution allows for the measurement of displacements at sub-decimeter level
 - No need for added complexity of a server-based solution

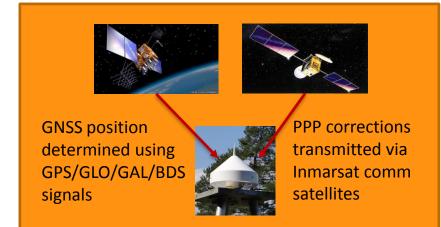

The Equipment: GNSS Receiver & Antenna Overview

PolaRx5 or PolaRx5e GNSS Receiver

- 544 hardware channels for simultaneous tracking of all visible satellite signals
 - GPS, GLONASS, GALILEO, BEIDOU, IRNSS, QZSS
- Interference monitoring-built in spectrum analyzer
- Built-in L-band receiver
 - PPP for seismic applications (optional feature)
- SYNC+ Storage Integrity feature
- Lowest power consumption in its class

Choke Ring B3/E6 GNSS Antenna

- Supports all GNSS signals, incl. BeiDou B3 and Galileo E6 and L-band capability
- IGS calibration available with or without radome



Adapting GNSS for EEW: On-board PPP

- Standard GNSS positioning suffers from systematic errors which limit the GNSS positioning accuracy to the meter level. Error sources include:
 - Satellite position and clock
 - Propagation delays in the ionosphere and troposphere
 - Local scattering effects
- PPP enables sub-decimeter-level accurate position calculations, independent of the users location
 - A global GNSS reference station network provides the raw data needed to derive orbit and clock corrections

- The accuracy and resolution are enhanced by the PPP solution:
 - 4 cm horizontal accuracy
 - 6 cm vertical accuracy
- PolaRx5 provides real-time recording of the high-frequency vibrations typically accompanying earthquakes
 - PPP algorithms tuned to respond to the typical dynamics for earthquakes
 - Enhanced Septentrio LOCK+ algorithm to maintain tracking during earthquakes

Adapting GNSS for EEW: Storage Integrity

- The PolaRx5 series includes a smart telemetry system for efficient use of data bandwidth and storage integrity
- Automatic transfer of data from a receiver to a remote server can result in lost data or the unnecessary retransmission of complete data files.
- PolaRx5 features SYNC+, a fast differencing algorithm that analyses data files at the remote location and transfers only the missing packets.

Septentrio in Confidence

- Summary
 - Septentrio's experienced scientists and engineers are addressing the technical challenges faced by geophysicists across various disciplines
 - Multi-frequency GNSS technology should play an integral role for Earthquake Early Warning programs
 - On-board PPP enables accurate measurement of displacements at sub-decimeter level
 - SYNC+ Storage Integrity will ensure that all data is transmitted from a receiver to a remote server
 - <u>We believe in Science</u>. How can we support you?

Acknowledgements

Francesca Clemente, PhD. – Product Manager, Septentrio

GFZ

Helmholtz-Zentrum

Universität Stuttgart Germany

Mo.Kapila@Septentrio.com

Tel.: +1-949-300-1524

Europe

Greenhill Campus Interleuvenlaan 15G, 3001 Leuven Belgium

+32 16 30 08 00

Americas

23848 Hawthorne Blvd. Suite 200, Torrance, CA 90505 USA

+1 310 541 8139

@septentrio www.septentrio.com

Asia-Pacific

Level 901 The Lee Gardens 33, Hysan Avenue, Causeway Bay Hong Kong

+852 3959 8680