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Constraints on the Earth’s rheology

» Deformation of the Earth occurs at all spatial and temporal scales and gives insights on the Earth’s rheology
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Constraints on the Earth’s rheology

» Deformation of the Earth occurs at all spatial and temporal scales and gives insights on the Earth’s rheology
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» Only regional information and ~ limited to the asthenosphere

» Do we have independent observations to constrain the Earth’s rheology at time scales from ~ 1 to 10 years?




Outline

1. Seasonal deformation of the Earth 1 year

a) Rheology of the asthenosphere
b) Mantle transition zone

GRACE + GNSS

2. Improving observations of recent ice melting vs GIA

N4
3. The waltz between the Earth’s Figure and rotation axis Decades

SLR +
loading
models



Outline

,, 1. Seasonal deformation of the Earth 1 year
2
O
+
LL
O
<
C
©
- 28
TR 3 V
n Lo E Decades



Anatomy of GNSS station position time series

LHAZ Discontinuities

* Equipment changes
* Co-seismic displacements

+
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Quasi-linear displacements
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e Tectonics
e Post-glacial rebound
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Transient tectonic deformation

Det. East (mm)

e Post-seismic displacements
e Slow slip events
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Non-tectonic transient deformation

= = ¢ Hydrological, non-tidal oceanic and
atmospheric loading
e Recent ice melting
e Thermoelastic deformation
¢ Poroelastic deformation
(systematic errors in geodetic products)
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A measure of surface mass loading

Gravity Recovery and Cl|mate Experlment (GRACE)
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Loading model derived from GRACE

Physical Explanation
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Loading model derived from GRACE vs GNSS observations

Time series

LHAZ, China
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Loading model derived from GRACE vs GNSS observations

Time series Global annual WRMS
LHAZ, China EAST

10 v & 120
7 1 VFW“‘“.-O—\_.
€T s5p n £53¥ o » o
£ ] P Y0,
= I 4 . ‘
§ ! <' \
g s | 2
2002 2004 2006 2008 2010 2012 ,_/
10 e T T
i \\//”“"”ﬁ\ =
E 5 ] 7 M &’ 120° r -w' : / v 180
£ , M T WRMS reduction (%) WRMS reduction (%)
‘@ o ; -60-50-40-30-20-10 0 10 20 30 40 50 60 ~60-50-40-30-20-10 0 10 20 30 40 50 60
w 1
D [ ]
o sf ] VERTICAL
[ i : o .
_10’HHHHmH‘mHmm‘HHHmHm‘H‘H‘H‘Hmm‘m‘mmmmH‘H\mmmmmmmmmu’ -
200: 2004 2006 2008 2010 2012
-
RS
30 3

» First order elastic model for
seasonal deformation
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Rheology of the asthenosphere

» Far field postseismic asthenospheric stress perturbations are comparable to seasonal stresses induced by surface
loading (#1kPa, surface velocities < 5mm/yr)

» Deformation mechanisms should be similar for both processes

» Do asthenospheric Burgers rheologies derived from postseismic studies hold for modeling seasonal deformation ?
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Rheology of the asthenosphere

» Test with rheological estimates from published postseismic studies
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Rheology of the asthenosphere

» Test with rheological estimates from published postseismic studies
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Rheology of the asthenosphere

> Transient viscosities lower than 5.107" Pa.s and transient shear modulus smaller than u/5 are not compatible with
models of seasonal deformation

» May indicate that the transient asthenospheric viscosity in tectonically active regions is lower than the
global average but we do not observe a systematic misfit of the seasonal model at plate boundaries

» Part of the fast early postseismic deformation may be due to afterslip if the transient viscosity required to
explain the data is lower than 5.10'7 Pa.s

» Transposable linearly to longer periods of loading, constraining larger viscosities

» Signals with multiple years periods (ex: droughts periods in CA) were already measured by GRACE

» GRACE-FO may provide further longer period observables
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Mantle Phase Transformations

» Seasonal deformation by long wavelengths surface loading may be sensitive to the Seasonal load m
rheolo f the mantle transition zon
gy of the mantle transition zone
& L
» Seasonal surface loading induce pressure variations in the mantle that may displace é§§ Mineral
the equilibrium of mineralogical transformations and induce volume changes Equilibrium

» Kinetics of mantle phase transitions are poorly constrained
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{Cadek & Feitout, 2003)

» Use seasonal deformation to provide
constraints on the kinetics of mineralogical
mantle phase transformations?

» At what time scale do we need to adapt
Love numbers to account for mineralogical
transformations ?




Mantle Phase Transformations

» Density increase in the Earth’s interior with pressure is due to:

> (1) elastic compressibility (bulk modulus K )
>

(2) mineralogical phase changes

» Two mantle bulk moduli K

> (1) K= elastic bulk modulus
> (2) K= relaxed bulk modulus
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Transformations considered:

» 300-700km Broad (Opx,Cpx) - Gt Maj - Perovskite
» 400-410km Sharp Olivine - Wadsleyite

» 660-670km Sharp Ringwoodite - Perovskite




Modelling mantle phase transformations

» Description of elastic properties of material undergoing mineralogical phase transformations should account
for compressibility occuring over a characteristic kinetic time

» This can be taken into account in models by computing Love numbers with the introduction of a frequency
dependent bulk modulus

K

nﬂ K oo Ko relaxed incompressibility
= Bulk modulus rheology: — —A\W\— = Koo elastic incompressibility
'K' O" Nk ~transformation kinetics

. . . r[l‘ri Moo Mo relaxed shear modulus

= Potentially associated with U A— 4He elastic shear modulus

shear deformation: AN 'y o

Uo Nu ~transformation kinetics

= Necessary to insure that the reaction occurs in sharp transitions layers

(Chanard et al., in prep)



Effect of total mineral transformation at the seasonal scale

Broad (Opx,Cpx) - Gt Maj - Perovskite
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» Horizontal displacements could be up to 2.5 times larger than those predicted by a purely elastic model
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Effect of total mineral transformation at the seasonal scale

LHAZ, China
£
E
» We model frequency dependent bulk moduli to account 5
for mineralogical phase transformation 3
» Best fitting model at the global scale for less than 5% of
the broad Cpx-Gt Maj reaction occuring at a
subannual time scale. E
» No phase shift between observations and model 3
» Global observations indicate that mantle phase
kinetics are longer than 1 year on average £
» Limitation of kinetics? Latent heat, diffusion processes? i
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Back to the GRACE data

Mean annual peak-to-peak Equivalent Water Height
(2002-2015)
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» North-South stripes (due to satellites orbit & imperfect > Increase spatial resolution
gravity field correction models) » Reduce signal to noise ratio | |

> Leakage around large masses (due to truncature of SH) > Look at smaller scale geophysical signals

(Prevost et al., 2019)



Trends in the GRACE-M-SSA solution (2002-2015)
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South Georgia

» Largest sub-Antarctic island

» Isolated 170km x 40km with a mountain range reaching ~3000m
» Mainly covered by glaciers, ice and snow
» Climate change: 90% of glaciers have retreated by at least 1km over the past 50 years

Cook et al. (2010)

» Can an improved GRACE solutions provide insights on the physics of recent ice melting by allowing to study

isolated regions?
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Gravity Trends around South Georgia

Usual GRACE solution
(mean of DDKS5 filtered solutions)

GRACE M-SSA solution

> Gibbs effect (resulting from
the degree of SH
truncature of the recent ice
unloading in GRACE
processing) is observed
but with an amplitude 5
times smaller than
observed positive anomaly

» The observed positive
gravity anomaly around
South Georgia is reliable

-0.5 0.0 0.5 1.0 1.5 -15 -1.0 -05 0.0 0.5
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(Prevost et al., in prep)



Gravity signals: recent ice melting vs GIA

» GIA viscoelastic modeling for standard mantle viscosities and ice history (Barlow et al., 2016)

» Recent elastic ice melting modeling (GRACE) . ] )
Cross section of gravity trend from the center of South Georgia
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0.2 i
» Superimposing GIA and present-day ice melting helps 0
explaining the observed gravity depression around the .

. -0.2
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» GRACE gravity distribution is important to better
separate sources of (visco-)elastic deformation, not
only ice melting averaged estimates
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» In turn, this helps providing constraints viscosities
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Satellite Laser Ranging (SLR)

» Global network of stations measuring the round trip time of
short pulses of light to satellites equipped with reflectors

» Largely use for reference frame definition (ITRF) and orbit
determination applications

» SLR is noiser than GNSS and has fewer stations but
longer time series

LAGEOS




Earth’s Figure axis orientation

BACKGROUND

» The principal Figure axis of the Earth refers to its mean axis of maximum inertia

» In the absence of external forces, it should coincide with the rotation axis when averaged over long periods

» But, because of tidal and surface loading, the rotational axis shows a circular motion around the Figure axis
essentially at ~annual time scales

> What happens in between, at decadal time scales? How well do the two axes align?
DATA/METHOD

» Measure of the long term displacement of the Figure axis with respect to the crust using degree-2 order-1
geopotential coefficients of the 34-year SLR observation period

» Measure of the rotation pole coordinate with GPS+VLBI

» Compare them at the decadal time scale and see what happens...
(Couhert et al., subm.)



The waltz between the Earth’s Figure and rotation axis
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» Both time series do not exactly coincide
» ~ 20mas difference is 60cm at the Earth’s surface

» Largely above the measurement precision

(Couhert et al., subm)



The waltz between the Earth’s Figure and rotation axis

» Viscoelastic modelling forced by geophysical fluid models

» Inversion for pole tide and load Love numbers

k-annual period = 0.350 — 0.003i
le.G year tide = 0.373 — 0.0311 + relaxat|on
! _0.308+ 0003, tme~10yrs

2annual period —

» Good consistency around Chandler frequency
» Significant viscoelasticity at 18.6yr

» Interestingly, long term polar motion
(18.6yr) is essentially sensitive the
rheology of the D” and we investigate a
potential viscosity constraint on the
deepest part of the mantle from the
waltz between the Earth’s Figure and
rotation axis a the decade timescale
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(Couhert et al., subm)



Conclusions

» Non-tectonic deformation observed through geodesy can provide useful constraints on the Earth’s rheology for
times scales of 1yr to 10yrs to this day :

» Seasonal deformation of the Earth provides lower bounds on asthenospheric transient rheology and
mineralogical mantle phase transformation kinetics

> “Small scale” GRACE gravity anomalies spatial distribution may help constraints viscosities for ice melting/GIA

» Long time scale of geodetic (SLR) measurements are a potential source of rheological constraints — here on
the rheology of the deep mantle

» All of these constraints are consistent with each other, and other estimates at different time scales, and help build
frequency dependent rheologies
» Important for both Geophysical and “opérationnal” aspects (ITRF realization)

» But... a unified frequency dependent rheology may be difficult to derive deformation processes at the mineral
scale are dependent on deformation rates



