Yet More GNSS Applications: Volcanic Hail Detection and Instantaneous Velocities for Rapid Earthquake Characterization

Ronni Grapenthin (UAF-GI)

Collaborators: Sigrún Hreinsdóttir (GNS), Alexa Van Eaton (CVO), Carl Tape (UAF), Mike West (UAF), Jeff Freymueller (MSU)

Ionosphere, Tectonics ... Snow Depth

Komjathy et al. (2016)

Ionosphere, Tectonics ... Snow Depth

Komjathy et al. (2016)

Herring et al. (2016)

Ionosphere, Tectonics ... Snow Depth

Komjathy et al. (2016)

McCreight et al., (2014), Larson et al. (2009)

Herring et al. (2016)

Eruption Close-Up: Grímsvötn 2011

Eruption Close-Up: Grímsvötn 2011

Eruption:

- Subglacial basaltic volcano covered by the Vatnajökull ice cap
- Explosive eruption 21-28 May 2011 (VEI 4)
- Recorded displacement of >57 cm
- Produced eruption plumes > 20 km

2011 Grímsvötn Eruption

2011 Grímsvötn: Plume Analysis

Plumes: Phase Delay and SNR

Grapenthin et al., JVGR (2013)

Plumes: Phase Delay and SNR

Grapenthin et al., JVGR (2013)

Plumes: Grímsvötn 2011

Hreinsdóttir et al. (2014)

Plumes: GFUM Phase Delay

Plumes: GFUM Phase Delay

Plumes: GFUM Phase Delay

Grapenthin et al., GRL (2018)

Plume Analysis: SNR & Phase Delay

Plume Analysis: SNR & Phase Delay

Plume Analysis: SNR & Phase Delay

Plume Analysis: Hail

Grímsvötn 2011 – Hagl-02 Macro-photo Þórður Arason 11 June 2011

Instantaneous Velocities - Phase Observation Model

$$\phi^{(s)} = \frac{1}{\lambda} (\mathbf{r}^{(s)} + \mathbf{I} + \mathbf{T}) + \frac{c}{\lambda} (\delta t_u - \delta t^s) + \mathbf{N} + \mathbf{MP} + \epsilon$$

$$\phi^{(s)} = \frac{1}{\lambda} (r^{(s)} + I + T) + \frac{c}{\lambda} (\delta t_u - \delta t^s) + N + MP + \epsilon$$

- $\phi^{(s)}$ carrier phase to satellite *s*, **in cycles, measured** $r^{(s)}$ true range to satellite *s*
- λ carrier wavelength (L1: 19.05 cm, L2: 24.45 cm, L5: 25.48 cm)
- c speed of light
- $\delta t_{\rm u}, \delta t^{\rm s}$ receiver, satellite clock biases
- I, T Ionospheric and tropospheric delays
- N integer ambiguity, number of full cycles not tracked
- MP Multipath (interference of reflected signals, see below)
- ϵ unmodeled effects, measurement errors, etc.

$\phi^{(s)} = \frac{1}{\lambda}(r^{(s)} + I + T) + \frac{c}{\lambda}(\delta t_u - \delta t^s) + N + MP + \epsilon$

Misra and Enge (2011), Colosimo et al. (2011), Gaglione (2015), Grapenthin et al. (2018)

$$\phi^{(s)} = \frac{1}{\lambda} (r^{(s)} + I + T) + \frac{c}{\lambda} (\delta t_u - \delta t^s) + N + MP + \epsilon$$

$$\Delta \Phi^s = (\mathbf{v}^s - \mathbf{v}_u) \times \mathbf{1}^s + \dot{b} + \delta \epsilon_{\Phi}$$

Misra and Enge (2011), Colosimo et al. (2011), Gaglione (2015), Grapenthin et al. (2018)

Instantaneous Velocities

$$\begin{split} \phi^{(s)} &= \frac{1}{\lambda} (r^{(s)} + l + T) + \frac{c}{\lambda} (\delta t_u - \delta t^s) + N + MP + \epsilon \\ \Delta \Phi^s &= (\mathbf{v}^s - \mathbf{v}_u) \times \mathbf{1}^s + \dot{b} + \delta \epsilon_{\Phi} \\ \mathbf{D} &= \mathbf{G} \begin{bmatrix} \mathbf{v}_u \\ \dot{b}_u \end{bmatrix} + \delta \epsilon_{\Phi} \end{split}$$

Misra and Enge (2011), Colosimo et al. (2011), Gaglione (2015), Grapenthin et al. (2018)

Instantaneous Velocities: 2016 M_w7.1 Iniskin

Grapenthin et al., 2018

Instantaneous Velocities: 2016 M_w7.1 Iniskin

Grapenthin et al., 2018

Instantaneous Velocities: 2016 M_w7.1 Iniskin

-15 -10 -5 0 5 10 15

Grapenthin et al., 2018

Instantaneous Velocities: 2015 M_w7.8 Gorkha

Instantaneous Velocities: 2015 M_w7.8 Gorkha

GNSS has **broad impacts** touching many communities.

GNSS has **broad impacts** touching many communities.

With more to come ...?!