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Behavior at the boundaries of our world:

What can we learn about core and mantle dynamics from long and short period seismology?

Earth’s outer core

wsf ________} Important role in Earth’s dynamics:

1 e Generation of the geodynamo;

e Provides heat to the mantle - part of
the power source for plate tectonics.

e Is there stratification at the top? If so, &
why, when and how? 3

Existing seismological models of the
outer core are not perfect. They are:

Velocity Models . . . .
—m  wowa| © Parameterized for simplicity, not SEETG e
I ] grounded in physics; — 10— 106 [
— 11— e Based on older data;
3000 2500 2000 1500 . 3000 2500 2000 1500
Radius (km) e Show disagreement between body Radius (km)
Velocity models published wave and normal mode based models; Density models published
1975-2010. Based on modes e Therefore less useful for other 1975-1981.
& body waves, or body waves scientists.

alone.
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What can we learn about core and mantle dynamics from long and short period seismology?

Earth’s outer core - What can we do better?

A
We made a new model of the outer core’s
seismic properties (vp and p) and mineralogical
properties.

- We expect the outer core to (mostly) comprise
a well-mixed liquid. Assume this is true
everywhere. Assume PREM does a good job for
the rest of the Earth.

- Look for the outer core's Equation of State,
relating its bulk modulus and molar volume
— we get velocity and density.

Velocity or density

- We end up with a physics based
parameterisation.

- We can also use new data!

Depth
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Irving, Cottaar & Lekic, Sci. Adv. 2018.
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What can we learn about core and mantle dynamics from long and short period seismology?

Elastic Parameters of the Outer Core: EPOC-Vinet
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Uppermost outer core structure - an E' layer?
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Uppermost outer core structure - an E' layer?

Radius (km)
3400 3300 3200 3100
— — ——m=====———1 0.00
E=d=377Z2053==7" ~
e + —/i/? - T - - ___/’———7—'
“‘-“/"/"L ——————— pri 4/,/”,f_,——0.05
K77 -~
N - —
- N - - -0.10
y  /
/
17/ Velocity Models - _0.15
/- — AEO09 — ak135 HR71
1 — KGHJ — KHOMC — KHOCQ
— LY90 — N20A — PEM, iasp91
| — PREM — SP6 — TanakaM1 [ —0.20
: = TZH1S _— EPQC—Vinet . :
CMB g
Towards the IC

V,, relative to PREM (km/s)

- A large number of E' velocity
models exist, nearly all are
slower than PREM.

- Some of these models
suggest a seismically
anomalous layer. Our model
explains the mode data with
a smooth curve. But a layer
might still be present!
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What can we learn about core and mantle dynamics from long and short period seismology?

Uppermost outer core structure - an E' layer?

The name E’ follows Bullen’s layer-naming convention
Called the “Hidden Ocean of the Core” by Braginsky

Buffett (2014, figure right) shows that estimates of flow
at the surface of the outer core are predicted well by
MAC waves; a 140 km thick layer works.

May be the cause of signals in satellite observations of
Earth’s magnetic field (Vidal and Schaeffer, 2015); and

present in geomagnetic ‘jerk’ data (Chulliat et al., 2015).

Other studies prefer no stratification, or cannot see its
effect.

Figure 1 | Schematic illustration of the wave
motion. Radial motion V; causes a pressure
perturbation, which drives an azimuthal flow
Vy in the stratified layer. The presence of a
radial magnetic field opposes V,, and induces a
meridional flow Vy,. The fluid velocities reverse
direction over a full cycle of the wave.
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What can we learn about core and mantle dynamics from long and short period seismology?

Permitting variation in D" properties and an E' layer

A
EPOC-Vinet has 3
parameters
- Using the same methodology, we can:
> - allow a distinct E’ layer, where v,
and p diverge from those of the
well mixed outer core
A and

- let the seismic properties of the
D" (p, vs and v,) vary away from
PREM towards the CMB.
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Permitting variation in D" properties and an E' layer
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e Light elements concentrated by IC growth (eg Fearn &
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Uppermost outer core structure - an E' layer?

Compositional convection What might generate an E' layer?

and stratification of Earth’s core
e Light elements concentrated by IC growth (eg Fearn &
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e Planetary core formation - a primordial feature (see
Helffrich & Kaneshima 2013), or remnants of the moon-
forming impact (eg Landau et al, 2016)

e Immisible melts at OC
conditions (eg Averson et al,
2019, figure right; but also
Helffrich & Kaneshima 2004)
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Behavior at the boundaries of our world:

What can we learn about core and mantle dynamics from long and short period seismology?

Uppermost outer core structure - an E' layer?

But what should it look like seismically?

stratified
layer

Garnero et al. (1993)

Depth below CMB (km)
()
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Velocity (km/s)

Figure from Buffett & Seagle, 2010
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What can we learn about core and mantle dynamics from long and short period seismology?

Uppermost outer core structure - an E' layer?

But what should it look like seismically?

10

-
" i
0 9 / /4 ‘
10 ;
gl
20 Denser -0.8
£ Slower 9
< 30f Garnero et al. (1993) stratified 1 - T s
o
g wol layer o(_\: —Ap=-2.0% ©
o E S 06 &
2 s0 s 2
[ '(1:) L &
2 eof - Ap=-15% S
2 o 2
Y L
o ™ g “ 04 S
80| @ Ap=-1.0% 2
3r Lighter 2
%0 Faster
100 . ‘ 2 02
79 7.95 8 8.05 8.1 8.15 82 8.25 —Ap=-0.5%
Velocity (km/s) 1F
Figure from Buffett & Seagle, 2010 ol ‘ , | o
0 5 10 15 20

Sulfur Enrichment (mol%)

Figure from Brodholt & Badro, 2018

Maybe slow & light is possible?
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What can we learn about core and mantle dynamics from long and short period seismology?

Moving up to the MTZ

Figure from Kellogg, Hager Figure from Fukao &
& Van der Hilst, Science, 1999 Obayashi, 2013

Oceanic

40

e The question of how convection
behaves in the mantle and whether layering is present
has been tackled for decades - with insights from
geochemistry, geodynamics and seismology.
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Moving up to the MTZ - P'edeP"
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e We found very significant scattering from the ‘660 km’ discontinuity — it is much
rougher than the free surface.
Wu, Ni & Irving, Science, 2019
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What can we learn about core and mantle dynamics from long and short period seismology?

P'edeP’' from scattering?

> Free surface
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What can we learn about core and mantle dynamics from long and short period seismology?

P'edeP' and mantle convection
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P'edeP' and mantle convection
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e Substantial scattering from the ‘660 km’ discontinuity — it is much rougher than the free surface.

Wu, Ni & Irving, Science, 2019
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P'edeP' and mantle convection
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e Substantial scattering from the ‘660 km’ discontinuity — it is much rougher than the free surface.
e Symptomatic of chemical heterogeneity & impaired convection between the upper and lower

mantle. Wu, Ni & Irving, Science, 2019
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P'edeP' and mantle convection

See Wenbo Wu’s AGU / T e
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Flow at the 6607
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e Previous studies disagree about the genesis of the Bermudian Islands. We are looking under
Bermuda using receiver functions.
e We're also developing a new receiver function metric to help assess receiver function quality.

Burky, Irving & Simons, in prep
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Flow at the 6607
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What can we learn about core and mantle dynamics from long and short period seismology?

Flow at the 6607
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e We're developing a new receiver function metric to help assess receiver function quality.
e We find that Bermuda is underlain by a deeper than average ‘410’ km discontinuity, and a

complex ‘660’ km.
Burky, Irving & Simons, in prep
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Flow at the 6607
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presentation for more details! ﬁ
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e We're developing a new receiver function metric to help assess receiver function quality.
e We find that Bermuda is underlain by a deeper than average ‘410’ km discontinuity, and a
complex ‘660’ km.
Burky, Irving & Simons, in prep
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Conclusions

MTZ E' Outer Mantle
Layer core
Long and short period seismology can be applied to look at the physical properties of the Earth
at geodynamically important boundaries.

At the ‘660’°, we see evidence of roughness, indicating imperfect mixing. This does not mean
that material flow through the ‘660’ is absent, but it may be imperfect.

At the uppermost outer core, our EPOC outer core model reduces the need to have a slow E’, but
when one is permitted it is favored. This suggests that there may be a compositionally distinct
reservoir at the top of the outer core. The genesis mechanism for such a layer is still open.
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Trade-offs with D" properties

EPOC-Vinet has 3

parameters:
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Trade-offs with D" properties
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Trade-offs with D" properties
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Body wave predictions for an E' layer
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What if we had used a Birch Murnaghan formulation?
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Why a linearized inversio
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Non-linearity of the relationship
between mode center frequency
and elastic parameters of the core.

Each symbol corresponds to a
different mode used, and its size is
proportional to the mode’s
sensitivity to outer core structure
(%).

Symbol color represents the
magnitude of the non-linearity of
mode frequency shift due to a 1%
perturbation to outer core vy,
compared to uncertainty on the
measurement due to mantle
structure (which is nearly always
greater than measurement error).
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