The structural architecture of fault zones at depth

Zachary E. Ross California Institute of Technology

What do we know about the structural architecture of fault zones?

ierarchical volumetric systems:

- Principal slip surface (highly localized)
- Fault core ~1m
- Inner damage zones ~100-200 m wide
- Distributed damage zones ~1-10 km wide
- Many smaller embedded faults

Peacock et al. (2017), J. S.

Fault zone trapped waves provide constraints on damage zone width, shear wave velocity, *Q*

Waves that refract alon faults provide constraint contrast across int

- How do these properties vary in space and time?
- How do they control fluid flow within fault zones?
- How do these properties depend on cumulative offset and slip rate?

A) INITIAL DEFORMATION

life cycle of a fault zone

neral tendency to localize with ongoing formation

- veral key ingredients:
- Increasing confining pressure with depth
- Depth-dependent healing
- Strain-weakening rheology

ne geometric and mechanical operties evolve with time, what are the bected effects on the physics of the the physics?

e 2019 Ridgecrest sequence

- 6.4 foreshock on July 4, 2019
- 7.1 mainshock 34 hours later
- ured an unmapped fault network with ulative length >75 km
- ciated with Little Lake and Airport Lake zones

e proxy map from I-1 SAR data

Ross et al. (2019), in press.

117.6°W

117.4°W

>112,000 earthquakes do with matched filter over f three weeks

Relocated with GrowClus (Trugman & Shearer, 207

Ross et al. (2019), in press.

Ross et al. (2019), in press.

Formation of a major fault system in Japan: The San-in shear zone

- Intraplate region of Japan with lo strain accumulation
- Yet, several large events in last
 - 1943 M_w 7.0
 - 2000 M_w 6.7
 - 2016 M_w 6.2
- No geological evidence of active

Ross et al. (2018), J. Geop

2016 Mw 6.2 Tottori, Japan sequence

- ~40,000 aftershocks pr located
- Numerous lineations tre generally NW-SE
- Extensive branching ar segmentation
- Deeper aftershocks are more localized
- Significant off-fault trigg

Ross et al. (2018), J. Geop

al. (2018), *J. Geophys. Res.*

	Tottori	Parkfield
ure length	6 km	20 km
ated energy	5 x 10 ¹³ J	~5 x 10 ¹³ J
ss drop $\Delta\sigma$	18-27 MPa	2 MPa
ation efficiency $\eta \downarrow R = E \downarrow R / \Delta W \downarrow 0$ $t / \Delta \sigma \downarrow E (E \downarrow R / M \downarrow 0)$	5-7%	50-70%
Tottori earthquake was ~10x more dissipative		

Summary

- Fault zones are 3D structures that are continuously evolving
- They exhibit many different length scales
- Their geometric and mechanical properties influence energy dissipation, rupture velocity, fluid flow, rupture area, and much more
- These factors therefore probably depend on fault maturity