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What do we know about the structural architecture of fault zones?

•  Hierarchical volumetric systems:

•  Principal slip surface (highly localized)

•  Fault core ~1m

•  Inner damage zones ~100-200 m wide

•  Distributed damage zones ~1-10 km wide

•  Many smaller embedded faults

Mitchell and Faulkner (2009)



Peacock et al. (2017), J. Struct. Geol.



High-resolution tomography studies show 
significantly reduced velocities near major faults

Fault zone trapped waves provide 
constraints on damage zone width, 

shear wave velocity, Q

Waves that refract along bimaterial 
faults provide constraints on velocity 

contrast across interface

Zhao and Peng (2008)
Allam et al (2014), GJI Li et al. (2016)
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•  How do these properties vary in space and time?
•  How do they control fluid flow within fault zones?
•  How do these properties depend on cumulative offset and slip rate?

Allam et al (2014), GJI
Zhao and Peng (2008)



The life cycle of a fault zone

•  General tendency to localize with ongoing 
deformation

•  Several key ingredients:
•  Increasing confining pressure with depth
•  Depth-dependent healing
•  Strain-weakening rheology

•  If the geometric and mechanical 
properties evolve with time, what are the 
expected effects on the physics of 
earthquakes?

Ben-Zion and Sammis (2003)



The 2019 Ridgecrest sequence

•  Mw 6.4 foreshock on July 4, 2019

•  Mw 7.1 mainshock 34 hours later

•  Ruptured an unmapped fault network with 
cumulative length >75 km

•  Associated with Little Lake and Airport Lake 
fault zones

Ross et al. (2019), in press.



Damage proxy map from 
Sentinel-1 SAR data

Ross et al. (2019), in press.



>112,000 earthquakes detected 
with matched filter over first 
three weeks

Relocated with GrowClust 
(Trugman & Shearer, 2017)

Ross et al. (2019), in press.
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Ross et al. (2019), in press.



Formation of a major fault system in Japan: The San-in shear zone

•  Intraplate region of Japan with low 
strain accumulation

•  Yet, several large events in last century
•  1943 Mw 7.0
•  2000 Mw 6.7
•  2016 Mw 6.2

•  No geological evidence of active faulting

Ross et al. (2018), J. Geophys. Res.



2016 Mw 6.2 Tottori, Japan sequence

•  ~40,000 aftershocks precisely 
located

•  Numerous lineations trending 
generally NW-SE

•  Extensive branching and 
segmentation

•  Deeper aftershocks are much 
more localized

•  Significant off-fault triggering

Ross et al. (2018), J. Geophys. Res.
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The fault zone is 2-4x narrower at depth

Ross et al. (2018), J. Geophys. Res.
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•  Rupture velocity estimated at 1.9 km/s

•  From slip model, ∆𝜎= 18-27 MPa

•  ER = 5.7 x 1013 J

•  95% of seismic moment is below 8 km 
depth. Why?
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Tottori earthquake was ~10x more dissipative

2016 Mw 6.2 Tottori vs 2004 Mw 6.0 Parkfield (San Andreas)
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Summary

•  Fault zones are 3D structures that are continuously evolving

•  They exhibit many different length scales

•  Their geometric and mechanical properties influence energy dissipation, rupture velocity, 
fluid flow, rupture area, and much more

•  These factors therefore probably depend on fault maturity


