The M7 2016 Kumamoto, Japan, Earthquake:
Surface Strain in the Fault Damage Zone and
Shallow Fault Slip Revealed with Near-Field

Geodetic Imagery

Chelsea Scott!, Ramon Arrowsmith?!, Johann
Champenois?, Edwin Nissen3, Yann Klinger?, Lia Lajoie>,
Tadahsi Maruyama®, Tatsuro Chiba’’

IArizona State University, ?Institut de Radioprotection et de
Sareté Nucléaire (IRSN), 3University of Victoria, 4Institute de
Physique du Globe de Paris,>Colorado School of Mines, ¢Japan
Geological Survey, “Asia Air Survey Co.



Motivation & Outline Upper fault zone behavior: How

is slip transmitted to the surface?
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Fault slip inversion from
.topography, optical, and InSAR.
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3D coseismic displacements from  Broader impacts: Undergraduate

the M7 Kumamoto Earthquake lab; OpenTopography
Scott et al. (2018)
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What is the behavior of the upper

AN

fault zone?

\

2 km

Does fault slip propagate through
the velocity-strengthening portion
of the crust?

Challenge: How to measure

surface deformation with the fault
zone?

Challenge: Is the upper crust best
represented with an elastic
rheology?

‘Business as usual’
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‘No business’




What is the behavior of the upper
fault zone?

Does fault slip propagate through
the velocity-strengthening portion
of the crust?

Challenge: How to measure

surface deformation with the fault
zone?

Distributed
Deformation

Challenge: Is the upper crust best
represented with an elastic

rheology?
2 km &Y

‘Busy business’
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3D coseismic displacement:
Iterative closest point (ICP)
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3D
Displacement
Fields
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ICP horizontal correlation error (cm)
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Surface displacement at increasing aperture

Surface:
Field data

Tens of meters
depth: Displacement
discontinuity

To the depth of the
seismogenic zone:
Joint lidar- optical
correlation- InSAR
slip inversion

Scott et al. (2018)



Surface offset
measurements
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Displacement discontinuity: 10’s m aperture
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strike
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Fault slip constraints
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Slip Inversion
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Compare slip inversions

Topography, optical, INSAR

5 o Mjma 6.5
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Optical, InNSAR

Futagawa Fault

%\;u Fault

Asano & lwata (2016):

Kobayashi et al. (2017):
Strong motion seismic,
teleseismic, GNSS
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Science Conclusions

We examine surface deformation and coseismic fault slip from
differential topography, optical correlation, and InSAR
Imagery.
The inelastic failure of damaged fault zone rocks caused by the
high strains produces a distributed deformation signal.
Displacement The apparent on-fault slip
., ICP Displacement depletion is likely
accommodated as off-fault

A @) @ inelastic deformation.

Future earthquakes will likely
be recorded with hybrid
datasets. New opportunity to

learn about shallow fault slip.
@ ° Next: Broader impacts
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Undergrad differencing lab

Grand £
Challenges in
Geodesy:

Frequent
mention of
education

Surface

displacements
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type? | O w
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= Fault

Integration of
geodesy and
data science

othetical EQ;

Qi)

Students pretend to work for the Utah GS following a hyp

(1) Visualize how earthquakes deform landscapes.
(2) Relate fault slip, surface displacement, and earthquake magnitude.
(3) Interpret quantitative geospatial datasets with uncertainty.



www.opentopography.org/learn/ugrad_differencing

Getting Started MyOpenTopo Search OpenTopography... Q

“ o pe nlo pograp hy HOME  ABOUT DATA TOOLS LEARN COMMUNITY

High-Resolution Topography Data and Tools

Undergraduate Topographic Differencing Exercise

After a big earthquake people ask, ‘Where did the earthquake occur? How big was it? What type of fault was activated. We design an undergraduate laboratory exercise where
students learn how geologists use airborne lidar data to answer these questions for a synthetic earthquake along the Wasatch Fault in Salt Lake City, Utah. Students use remote
sensing data to measure how much and in what direction the ground moves during an earthquake. They explore classical faulting relationships by estimating the earthquake
magnitude and determining the type of fault activated (e.g., normal, reverse, strike-slip). In addition, students learn about the hazard and scientific response required for large
surface rupturing earthquakes and are exposed to cutting-edge technology for working with topography data.

Pre-earthquake Post-earthquake

Material includes: * Pre- and post- earthquake

* Pre-laboratory lecture topographic datasets

* Lab handout * By request to cpscottl @asu.edu:
* Student video Solutions video
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differencing
Infrastructure

damage during
the 2016 M7
Kumamoto
earthquake




Workflow

Overlapping data
ldentical grids
Raster subtraction
Error threshold

Challenges

Legacy data
— Invaluable
— Quality control

Hybrid data

— point cloud and
raster

— TLS, SfM, global
raster

Cyber-infrastructure

3D differencing:
Coming soon

Vertical
difference

Scott et al. In Review



Where can | perform differencing?

www.opentopography.org

Change Detection &

Indonesia
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Download Dataset Catalog in KML format

Colombia

llllll

Argentina

~40 dataset pairs
Critical Zones
Earthquakes
Volcanic eruptions
Rockfalls

-luvial Processes
Landslides

Urban growth

Many geomorphic and active tectonic processes



Thank you!
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