The M7 2016 Kumamoto, Japan, Earthquake: Surface Strain in the Fault Damage Zone and Shallow Fault Slip Revealed with Near-Field Geodetic Imagery

Chelsea Scott¹, Ramon Arrowsmith¹, Johann Champenois², Edwin Nissen³, Yann Klinger⁴, Lia Lajoie⁵, Tadahsi Maruyama⁶, Tatsuro Chiba^{7,} ¹Arizona State University, ²Institut de Radioprotection et de Sûreté Nucléaire (IRSN), ³University of Victoria, ⁴Institute de Physique du Globe de Paris,⁵Colorado School of Mines, ⁶Japan Geological Survey, ⁷Asia Air Survey Co.

Motivation & Outline Upper fault zone behavior: How is slip transmitted to the surface?

Differential topography fills nearfault data gap.

Inelastic failure of fault zone produces distributed deformation.

Fault slip inversion from topography, optical, and InSAR.

3D coseismic displacements from the M7 Kumamoto Earthquake Scott et al. (2018)

Broader impacts: Undergraduate lab; OpenTopography

What is the behavior of the upper fault zone?

Does fault slip propagate through the velocity-strengthening portion of the crust?

Challenge: How to measure surface deformation with the fault zone?

Challenge: Is the upper crust best represented with an elastic rheology?

'Business as usual'

What is the behavior of the upper fault zone?

Does fault slip propagate through the velocity-strengthening portion of the crust?

Challenge: How to measure surface deformation with the fault zone?

Challenge: Is the upper crust best represented with an elastic rheology?

'No business'

2 km

What is the behavior of the upper fault zone?

Does fault slip propagate through the velocity-strengthening portion of the crust?

Challenge: How to measure surface deformation with the fault zone?

Challenge: Is the upper crust best represented with an elastic rheology?

'Busy business'

Topographic differencing: Previous work

3D coseismic displacement: Iterative closest point (ICP)

Besl and McKay (1992); Geiger et al. (2012); Nissen et al. (2012; 2014); Scott et al. (2018)

Scott et al. (2018)

Displacement uncertainty

Surface displacement at increasing aperture

Surface offset measurements

Displacement discontinuity: 10's m aperture

Coseismic strain

First invariant of 2D strain tensor (area change)

Elastic strain limit:

$$\varepsilon_{yield} = \sigma_{yield} / E \approx 0.5\%$$

Joint differential lidar topography- optical correlation- InSAR earthquake source inversion

Lidar

InSAR

Scott et al. 2019

The need to better express data constraints

Scott et al. 2019

Asano & Iwata (2016): Strong motion seismic Kobayashi et al. (2017): Strong motion seismic, teleseismic, GNSS

fault slip (m)

Scott et al. 2019

Science Conclusions

We examine surface deformation and coseismic fault slip from differential topography, optical correlation, and InSAR imagery.

The inelastic failure of damaged fault zone rocks caused by the high strains produces a distributed deformation signal.

The apparent on-fault slip depletion is likely accommodated as off-fault stic deformation.

> Future earthquakes will likely be recorded with hybrid datasets. New opportunity to learn about shallow fault slip. Next: Broader impacts

Undergrad differencing lab

Grand Challenges in Geodesy:

Frequent mention of education

Integration of geodesy and data science

Students pretend to work for the Utah GS following a hypothetical EQ:

- (1) Visualize how earthquakes deform landscapes.
- (2) Relate fault slip, surface displacement, and earthquake magnitude.
- (3) Interpret quantitative geospatial datasets with uncertainty.

www.opentopography.org/learn/ugrad_differencing

 Getting Started
 MyOpenTopo
 Search OpenTopography...
 Q

 OpenTopography
 HOME
 ABOUT ~
 DATA ~
 TOOLS ~
 LEARN ~
 COMMUNITY ~

Undergraduate Topographic Differencing Exercise

After a big earthquake people ask, 'Where did the earthquake occur? How big was it? What type of fault was activated.' We design an undergraduate laboratory exercise where students learn how geologists use airborne lidar data to answer these questions for a synthetic earthquake along the Wasatch Fault in Salt Lake City, Utah. Students use remote sensing data to measure how much and in what direction the ground moves during an earthquake. They explore classical faulting relationships by estimating the earthquake magnitude and determining the type of fault activated (e.g., normal, reverse, strike-slip). In addition, students learn about the hazard and scientific response required for large surface rupturing earthquakes and are exposed to cutting-edge technology for working with topography data.

Post-earthquake topography:

Material includes:

- Pre-laboratory lecture
- Lab handout
- Student video

- Pre- and post- earthquake topographic datasets
- By request to cpscott1@asu.edu:
- Solutions video

OpenTopography

On-demand Topographic differencing Infrastructure damage during the 2016 M7 Kumamoto earthquake

Vertical difference (m)

Compare: 2009

Workflow

Overlapping data Identical grids Raster subtraction Error threshold **Challenges**

Challenges

Legacy data

- Invaluable
- Quality control

Hybrid data

- point cloud and raster
- TLS, SfM, global raster
- Cyber-infrastructure 3D differencing:

Coming soon

Scott et al. In Review

Where can I perform differencing?

www.opentopography.org

Change Detection 🍄

Many geomorphic and active tectonic processes

Thank you!

Acknowledgements

C. Scott was funded by NSF Posdoctoral Fellowship 1625221 & The School of Earth and Space Exploration at Arizona State University.

Optical Correlation-InSAR

