
Detecting and locating aftershocks for the 2020 M_W 6.5 Stanley, Idaho earthquake using convolutional neural networks

Bingxu Luo, Hejun Zhu, Jidong Yang, Thorne Lay, Lingling Ye, Zhong Lu and David Lumley

Our study is to build an aftershock catalog with a low magnitude of completeness for the 2020 M_W 6.5 Stanley, Idaho earthquake. This is challenging because of low signal to noise ratio for recorded seismograms. Therefore, we apply convolutional neural networks (CNNs) and use a 2-D time-frequency feature maps as inputs to address this problem. Another trained CNN is used to automatically pick P-wave arrival times, which are then used in both nonlinear and double-difference earthquake location algorithms. Our new one-month-long catalog has 4,644 events and a completeness magnitude $M_c=1.9$, which has over 7 times more events and 0.9 lower M_c than the current USGS-NEIC catalog. The distribution and expansion of these aftershocks improve the resolution of two NNW trending faults with different dip angles, providing further support for a central step-over region that changed the earthquake rupture trajectory and induced sustained seismicity.

Panels A and B show 662 aftershocks in the USGS-NEIC catalog before and after the double-difference relocation, respectively. Panel C presents 4,644 detected events using the CNNs. Three well-defined aftershocks clusters are labeled as C1, C2 and C3.