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Abstract
Despite the rapid adoption of robotics and artificial intelligence (AI) in the 
industry, their applications to scientific studies remain under-explored. 
Combining industry-driven advances with scientific exploration can provide new 
perspectives and a greater understanding of the planet and its environmental 
processes. We present technical methodologies and scientific results for 
leveraging robots and AI in the geosciences, with a focus on rock mapping, 
detection, and dynamics simulations. We demonstrate an interdisciplinary 
research direction to push the frontiers of both robotics and geosciences, with 
potential for translational contributions to commercial technologies for hazard 
monitoring and prospecting.  

Driven by the need for automation of data collection and data processing, this 
research investigates robotics and AI technologies to enable statistical modeling 
in geomorphology, seismology, and hazards analysis. Specifically, to segment 
and identify rocks in 2D, we develop a generalized data processing template for 
instance segmentation in remote sensing. This template integrates unpiloted 
aerial vehicle (UAV) surveys, structure from motion (SfM), and deep learning to 
solve unique technical challenges of instance segmentation in large-scale, 
high-resolution maps. By applying this template for geomorphological study in 
Bishop Volcanic Tablelands California, we quantify and analyze rock trait 
distributions to better understand rocky fault scarp formation processes. Besides 
2D rock detection, we also present methods to search and segment 3D rocks 
such as precariously balanced rocks (PBRs). Mapping PBRs facilitates 
earthquake studies via providing fragility constraints to uncertainties in 
probabilistic seismic hazard analysis models. To obtain 3D geometries of PBRs, 
an offboard pipeline combines deep learning techniques of 2D rock detection 
and 3D point cloud segmentation. This offboard pipeline segments PBRs in 
point clouds restructured from a UAV survey, and its applications can be 
extended to any existing dense point cloud datasets for 3D rock segmentation. 
Different from the offboard pipeline, an onboard UAV-based mapping system 
searches, detects, and maps PBRs in real time. The onboard mapping system 
offers immediate availability of PBR locations and geometries during a UAV 
survey. The onboard system also emphasizes the mapping of complete visible 
surface features on PBRs including their visible contact points with pedestals, 
which are critical factors of fragility. Additionally, we investigate PBR dynamics 
by building a virtual shake robot that can repeatedly simulate ground motions 
and monitor PBR dynamic responses. The virtual shake robot enables studies of 
PBR large displacements by tracking a toppling PBR trajectory, presenting novel 
methods of hazard analysis.

2D Rock Detection: An Instance Segmentation Template

2D Rock Detection: An Application to Study Rocky 
Scarps Formation Processes

3D Rock Detection: Offboard Method

3D Rock Detection: Onboard Method

Rock Dynamics Analysis: Virtual Shake Robot
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Figure 1: A data processing pipeline integrating Unpiloted Aircraft System, Structure 
from Motion, and Deep Learning (UAS-SfM-DL). (Chen et al., 2020, 2021)

Annotation Challenge: split shapefile polygon annotations to tiles

Post-processing Challenge: merge prediction polygons from tiles

Algorithm I. Generating annotation tiles from a large annotation map

Input:
  1) annotation map; 2) annotation tile metric size; 3) map 
coordinates 
Output:
  1) annotation tiles

for each polygon in annotation map:
    get bounding box of polygon
    calculate tile indices (i, j) of all four concerns of bounding box
    get unique tile indices/ purge redundant tile indices
    get intersections of polygon and indexed tiles
    assign intersections to indexed tiles   

Time complexity is linear O(N), where N is the number 
of polygons in the large annotation map.

Algorithm II. Instance registration

Data structure:
    1) registered instances are stored in an array
    2) each instance has a lookup table
    3) tiles are stored in a lookup table    
    4) each tile has a linked list data type. Each tile is first linked to 
local regions. Each region is linked to the indices of registered 
instances in that region.

for tile in tiles:
    for instance in tile:
           if instance is in middle region:
               register(instance)
           else:
               for adjacent_location in adjacent_locations:
                   for adjacent_instance in adjacent_location:
                       if bounding_box_overlap(instance, adjacent_instance) > 0:
                           if mask_overlap(insance, adjacent_instance) > 
mask_overlap_threshold:
                               merge_instance(instance, adjacent_instance)
                               next instance
               register(instance)

Time complexity is linear O(N), where N is the number of tiles. Given the 
maximum instance count in a tile M, time complexity of instance registration is 
O(NM2/4). Efficient computing algorithms are critical for instance application in 
large-scale maps. (Chen et al., 2022a in prep)

Figure 2: Annotation challenge

Figure 3: Post-processing 
challenge

R2 p-value

Median grain size 50 0.60 4.0e-04

Largest grain size M 0.76 1.0e-05

Sorting 0.81 2.3e-06

Small to large rock count ratio (=-8) 0.40 8.5e-03

Tangent to normal rock count ratio 
(whole scarp)

0.24 5.3e-02

Tangent to normal rock count ratio 
(western half)

0.46 4.0e-03

Figure 4: (Left) Formation of rocky fault scarps in the Volcanic Tablelands, Eastern 
California and (right) machine learning results. (Chen et al., 2022b under review)

Figure 4: Rock trait histograms of  (top) the 
fault scarp and surrounding topographic flats 
and (bottom row) the fault scarp alone.

Figure 5: Spatial distributions of median grain 
size perpendicular to fault strike.

Figure 6: Spatial distributions of (left) median 
rock size (area in plan view, m2) and (right) 
median grain size (Phi 50) 

Table 1: Rock traits and fault scarp height 
correlation statistics

earthquake

Figure 7: Precariously balanced rocks (PBRs) and the minimum contact angles to indicate earthquakes. 
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Precariously balanced rocks (PBRs) are naturally negative indicators of earthquakes. 
Distributions of geometric characteristics of PBRs inform less biased ground motions 
than individual models. However, an engineering challenge is search and map a large 
number of PBRs.

Figure 8: Workflow diagram of the offboard method of 3D rock detection and segmentation. (Chen et 
al., 2023 in prep)

Figure 9: PBRs detected and segmented at Granite Dells, Prescott, Arizona.

Figure 12: (Left) Virtual shake robot and (right) automation diagram. The virtual shake 
robot integrates Robot Operating System (control and status monitoring), Bullet Physics 
engine (dynamics simulation), and Gazebo (modeling). (Chen et al., 2022d in prep)

balanced       toppled balanced       toppled

Figure 13: Arrows indicate motion directions in terms of initial orientation yaws (left). 
Yaw 0 (middle) is more fragile than Yaw 180 (right). Balanced points within unstable 
zone (right) represent overturning moment perfectly balanced by restoring moment.

Figure 14: Simulation of the large displacement dynamics of a boulder after simple impulsive 
motion on SfM mapped terrain of PBR sites in Double Rock, CA. Left panel shows the sequential 
positions of the Double Rock PBR toppled by a sinusoid ground motion. Right shows the 
trajectory of the particle centroids during the tumbling motions through initial and final states.
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Offboard method limitations:
a) Waste of computing and 

memory: e.g., dense point 
cloud for sparse rock fields

b) Basal contact information loss 
since imaging flight not 
adaptive to rock geometry

Onboard method advantages:
a) Basal contact information as a 

result of precise and adaptive flight
b) Immediate availability of PBR 

mapping results
c) PBR-targeted mapping (semantic 

path planning)

Figure 10: Workflow diagram of the onboard method for PBR search and mapping. The 
system integrates online object detection, multi-view particle filtering, and simultaneous 
localization and mapping (SLAM). (Chen et al., 2022c in prep)

Figure 11: (a) Hexrotor with companion computers and stereo cameras found and mapped a (c) 
PBR at (b) Granite Dells, Prescott, Arizona. The search and mapping path is shown in Figure 11(d).

(a)                                                        (b)                                       (c)                                   (d)                                  
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