IRIS maintains a pool of FairfieldNodal Zland and SmartSolo IGU nodes (both 3-component, 5Hz) at the PASSCAL Instrument Center that are available for community use. For detailed information about specific node models, please visit the PASSCAL node instrumentation page linked below. As other vendor “nodes” are evaluated, we will post specifications in additional links.
Relevant Links:
PASSCAL Node Instrumentation webpage
Beginning with the IRIS-led Wavefield Community Demonstration Experiment IRIS has supported a variety of experiments that have deployed nodes.
For an up-to-date list of experiments that have used IRIS/PASSCAL nodes, please visit this link.
Please note that this list includes both completed and scheduled (funded) experiments that have included nodes as part or all of their instrumentation requests. This list does not indicate any community owned nodes that may have been contributed.
IRIS' current node use policy can be found over on the PASSCAL website at this link.
In addition to the IRIS/PASSCAL pool of nodes, several community members have purchased their own sets of nodes. Below is a partial list of node owners who have consented to have their names and contact info listed on this page.
Organization | Type | Number | Contact |
---|---|---|---|
IRIS/PASSCAL | Fairfield Nodal Zland 3C 5Hz |
621* general, 399* polar |
passcal.nmt.edu *As of Dec 2021 |
IRIS/PASSCAL | SmartSolo IGU-16HR 3C 5Hz |
1,990* general | passcal.nmt.edu *As of Dec 2021 |
University of Utah | Fairfield Nodal Zland 3C 5Hz |
200 nodes | Jamie Farrell |
University of Oklahoma | Fairfield Nodal Zland 3C 5Hz |
128 nodes | Xiaowei Chen |
National Central University (Taiwan) | Fairfield Nodal Zland 3C 5Hz |
90 nodes | Hao Kuo-Chen |
University of Texas at El Paso | Fairfield Nodal Zland 3C 5Hz |
55 nodes | Marianne Karplus |
University of Texas at El Paso | Fairfield Nodal Zland 3C 5Hz |
50 nodes | Julien Chaput |
Louisiana State University | Fairfield Nodal Zland 3C 5Hz |
50 nodes | Patricia Persaud |
University of Arizona | Fairfield Nodal Zland 3C 5Hz |
96 nodes | Eric Kiser |
University of Hawai‘i at Mānoa | Fairfield Nodal Zland 1C 5Hz Zland 3C 5Hz |
29 nodes 25 nodes |
Niels Grobbe |
IRIS has started collecting posters resulting from nodal experiments which you can find here.
An incomplete list of publications that analyze data collected with nodes. If you know of a publication not on this list, please email justin.sweet@earthscope.org.
Behm, M., Cheng, F., Patterson, A., & Soreghan, G. S. (2019). Passive processing of active nodal seismic data: estimation of VP∕VS ratios to characterize structure and hydrology of an alpine valley infill. Solid Earth, 10(4), 1337–1354, https://doi.org/10.5194/se-10-1337-2019
Bowden, D.C., V.C. Tsai, F.-C. Lin (2015). Site Amplification, Attenuation and Scattering from Noise Correlation Amplitudes Across a Dense Array in Long Beach, Geophys. Res. Lett., 42: 1360–1367, doi: https://doi.org/10.1002/2014GL062662
Brenguier, F., P. Kowalski, N. Ackerley, N. Nakata, P. Boué, M. Campillo, E. Larose, S. Rambaud, C. Pequegnat, T. Lecocq, P. Roux, V. Ferrazzini, N. Villeneuve, N. M. Shapiro, J. Chaput (2015). Toward 4D Noise-Based Seismic Probing of Volcanoes: Perspectives from a Large-N Experiment on Piton de la Fournaise Volcano. Seismological Research Letters ; 87 (1): 15–25, doi: https://doi.org/10.1785/0220150173.
Bolarinwa, O. and C. A. Langston (2021), Calibrating the 2016 IRIS Wavefields Experiment Nodal Sensors for Amplitude Statics and Orientation Errors. Bulletin of the Seismological Society of America, 111 (3): 1303–1324. doi: https://doi.org/10.1785/0120200275
Bolarinwa, O. and C. Langston (2022). Wave Gradiometry and Continuous Wavelet Transform Thresholding. EGU22, (EGU22-6577). https://meetingorganizer.copernicus.org/EGU22/EGU22-6577.html
Bolarinwa, O. J. (2022). Assessing the Performance of an Experimental Gradiometer Array (Doctoral dissertation, The University of Memphis). https://www.proquest.com/docview/2699633695
Brox, D. S., & Sacchi, M. D. (2022). Robust Vector MSSA for SNR Enhancement of Seismic Records. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-6, doi: https://doi.org/10.1109/TGRS.2022.3180775
Clayton R., P. Persaud, M. Denolle and J. Polet (2019). Exposing Los Angeles's Shaky Geologic Underbelly, Eos https://eos.org/science-updates/exposing-los-angeless-shaky-geologic-underbelly
Di Luccio, F., P. Persaud, L. Cucci, A. Esposito, G. Ventura and R. Clayton (2019). Seismic Sensors Probe Lipari’s Underground Plumbing, Eos https://eos.org/science-updates/seismic-sensors-probe-liparis-underground-plumbing
Dougherty, S. L., Cochran, E. S., & Harrington, R. M. (2019). The LArge‐n Seismic Survey in Oklahoma (LASSO) Experiment, Seismological Research Letters, https://doi.org/10.1785/0220190094.
Fan, W and J. J. McGuire (2018). Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma, Geophysical Journal International, https://doi.org/10.1093/gji/ggy203.
Farrell, J., S‐M. Wu, K. Ward, F‐C. Lin (2018). Persistent Noise Signal in the FairfieldNodal Three‐Component 5‐Hz Geophones. Seismological Research Letters, doi: https://doi.org/10.1785/0220180073.
Hansen, S. and B. Schmandt (2015). Automated Detection and Location of Microseismicity at Mount St. Helens with a Large-N Geophone Array. Geophysical Research Letters, doi: https://doi.org/10.1002/2015GL064848.
Hansen, S. M., Schmandt, B., Levander, A., Kiser, E., Vidale, J. E., Abers, G. A., & Creager, K. C. (2016). Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. Nature Communications, 7, 13242, doi: https://doi.org/10.1038/ncomms13242.
Inbal, A., J. P. Ampuero, R. W. Clayton (2016), Localized seismic deformation in the upper mantle revealed by dense seismic arrays, Science, 354, 88-92, doi: https://doi.org/10.1126/science.aaf1370.
Inbal, A., R. W. Clayton, and J.‐P. Ampuero (2015), Imaging widespread seismicity at midlower crustal depths beneath Long Beach, CA, with a dense seismic array: Evidence for a depth‐dependent earthquake size distribution, Geophys. Res. Lett., 42, 6314–6323, doi: https://doi.org/10.1002/2015GL064942.
Langston, C. A., & Mousavi, S. M. (2019). Separating Signal from Noise and from Other Signal Using Nonlinear Thresholding and Scale‐Time Windowing of Continuous Wavelet Transforms, Bulletin of the Seismological Society of America, https://doi.org/10.1785/0120190073.
Li, F., Y. Qin and W. Song (2019). Waveform Inversion-Assisted Distributed Reverse Time Migration for Microseismic Location. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, doi: https://doi.org/10.1109/JSTARS.2019.2904206.
Li C., Z. Li, Z. Peng, C. Zhang, N. Nakata, and T. Sickbert (2018). Long‐Period Long‐Duration Events Detected by the IRIS Community Wavefield Demonstration Experiment in Oklahoma: Tremor or Train Signals?. Seismological Research Letters, doi: https://doi.org/10.1785/02201080081.
Li, Z., Z. Peng, D. Hollis, L. Zhu, J. McClellan (2018). High-resolution seismic event detection using local similarity for Large-N arrays, Sci. Rep., 8(1), 1646. doi: https://doi.org/10.1038/s41598-018-19728-w.
Lin, F.-C.,D. Li, R. W. Clayton, and D. Hollis (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array, Geophysics, 78(4), Q45-Q56, doi: https://doi.org/10.1190/geo2012-0453.1.
Liu, G., P. Persaud and R. W. Clayton (2018), Structure of the Northern Los Angeles Basins Revealed in Teleseismic Receiver Functions from Short-term Nodal Seismic Arrays. Seismological Research Letters. https://doi.org/10.1785/0220180071
Nakata, N., J. P. Chang, J. P., J. F. Lawrence, and P. Boué (2015). Body-wave extraction and tomography at Long Beach, California, with ambient-noise interferometry J. Geophys. Res., 120, 1159-1173, doi: https://doi.org/10.1002/2015JB011870.
Quinones, L., DeShon, H. R., Hornbach, M., Magnani, M. B., Stump, B. W., & Hennings, P. H. (2021). TRACKING INDUCED SEISMICITY IN THE FORT WORTH BASIN, TEXAS AND NORTHERN OKLAHOMA USING LOCAL AND LARGE-N STYLE ARRAYS. PhD Dissertation, Southern Methodist University. https://scholar.smu.edu/cgi/viewcontent.cgi?filename=2&article=1021&context=hum_sci_earthsciences_etds&type=additional
Riahi, N and P. Gerstoft (2017), Using Graph Clustering to Locate Sources within a Dense Sensor Array, Signal Processing 132, March 2017, Pages 110–120, https://doi.org/10.1016/j.sigpro.2016.10.001
Riahi, N., and P. Gerstoft (2015), The seismic traffic footprint: Tracking trains, aircraft, and cars seismically, Geophys. Res. Lett., 42, doi: https://doi.org/10.1002/2015GL063558.
Ringler, A. T., R. E. Anthony, M. S. Karplus, A. A. Holland, D. C. Wilson (2018). Laboratory Tests of Three Z-Land Fairfield Nodal 5-Hz, Three-Component Sensors. Seismological Research Letters, doi: https://doi.org/10.1785/0220170236.
Schmandt, B. and R. W. Clayton (2013). Analysis of teleseismic P-waves with a 5200-station array in Long Beach, California: evidence for an abrupt boundary to Inner Borderland rifting. J. Geophys. Res. Solid Earth, 118, doi: https://doi.org/10.1002/jgrb.50370.
Sweet, J. R., K. Anderson, S. Bilek, M. Brudzinski, X. Chen, H. DeShon, C. Hayward, M. Karplus, K. Keranen, C. Langston, F‐C. Lin, M. Beatrice Magnani, and R. Woodward (2018). A Community Experiment to Record the Full Seismic Wavefield in Oklahoma. Seismological Research Letters, doi: https://doi.org/10.1785/0220180079.
Wang, Y., F.-C. Lin, B. Schmandt, J. Farrell (2017). Ambient noise tomography across Mount St. Helens using a dense seismic array, J. Geophys. Res. Solid Earth, 122, doi: https://doi.org/10.1002/2016JB013769.
Ward, K. M., and F. C. Lin (2017). On the Viability of Using Autonomous Three‐Component Nodal Geophones to Calculate Teleseismic Ps Receiver Functions with an Application to Old Faithful, Yellowstone. Seismological Research Letters ; 88 (5): 1268–1278, doi: https://doi.org/10.1785/0220170051.
Wu, S.-M., K. M. Ward, J. Farrell, F.-C. Lin, M. Karplus, and R. B. Smith (2017). Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin, Geophysical Research Letters, 44. doi: https://doi.org/10.1002/2017GL075255.